Leaf water potential and gas exchange of eucalypt clonal seedlings to leaf solar protectant

Talita Miranda Teixeira Xavier , José Eduardo Macedo Pezzopane , Ricardo Miguel Penchel , José Ricardo Macedo Pezzopane

Journal of Forestry Research ›› 2019, Vol. 30 ›› Issue (1) : 57 -63.

PDF
Journal of Forestry Research ›› 2019, Vol. 30 ›› Issue (1) : 57 -63. DOI: 10.1007/s11676-018-0602-0
Original Paper

Leaf water potential and gas exchange of eucalypt clonal seedlings to leaf solar protectant

Author information +
History +
PDF

Abstract

This experiment was carried out in acclimatized greenhouses with seedlings of two hybrid clones of Eucalyptus urophylla × Eucalyptus grandis. A sunscreen protector consisting of 62.5% calcium carbonate was sprayed on the seedlings at weekly intervals. Water stress was induced by suspending irrigation until the soil reached 30% available water and water was then replaced so that it returned to field capacity. Gas exchange and leaf water status were measured after 50 days. The experiment was set up in a 4 × 2 factorial randomized block design in four distinct environments: (1) temperatures less than 21.2 °C and vapor pressure deficit of 0.15 kPa; (2) intermediate temperatures of 24.2 °C and vapor pressure deficit of 0.69 kPa; (3) high temperatures of 27.0 °C and high vapor pressure deficit of 1.4 kPa; and, (4) high temperature of 27.0 °C and vapor pressure deficit below 1.10 kPa. Two leaf sun protector treatments were used, with five replications each. High atmospheric demand acted as a stress factor for the seedlings during the initial growth phase. Applications of leaf sunscreen protector provided beneficial effects in maintaining optimum water status and gas exchanges of the plants under water stress.

Keywords

Eucalyptus urophylla × Eucalyptus grandis / Calcium carbonate / Water stress / Atmospheric demand

Cite this article

Download citation ▾
Talita Miranda Teixeira Xavier, José Eduardo Macedo Pezzopane, Ricardo Miguel Penchel, José Ricardo Macedo Pezzopane. Leaf water potential and gas exchange of eucalypt clonal seedlings to leaf solar protectant. Journal of Forestry Research, 2019, 30(1): 57-63 DOI:10.1007/s11676-018-0602-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Agrios GN. Plant pathology, 2005, San Diego: Elsevier 922

[2]

Ahmed FF, Shaaban MM, Abd El-Aal AMK. Protecting crimson seedless grapevines growing in hot climates from sunburn. Res J Agric Biol Sci, 2011, 7(1): 135-141.

[3]

Armond PA, Schreiber U, Björkman O. Photosynthetic acclimation to temperature in the desert Shrub Larrea divaricata II. Light—harvesting efficiency and electron transport. Plant Physiol, 1978, 61: 411-415.

[4]

Bedon F, Maiada J, Feito I, Chaumeil P, Dupuy JW, Lomenech AM, Barre A, Gion JM, Plomion C. Interaction between environmental factors affects the accumulation of root proteins in hydroponically grown Eucalyptus globulus (Labill.). Plant Physiol Biochem, 2011, 49(1): 69-76.

[5]

Bertolli SC, Rapchan GL, Souza GM. Photosynthetic limitations caused by different rates of water-deficit induction in Glycine max and Vignaunguiculata. Photosynthetica, 2012, 50(3): 329-336.

[6]

Bhargava S, Swantan K. Drought stress adaptation: metabolic adjustment and regulation of gene expression. Plant Breed, 2012, 132(1): 21-32.

[7]

Carlesso R. Absorção de água pelas plantas: água disponível versus extraível e a produtividade das culturas. Rev Ciênc Rural, Santa Maria, 1995, 25(1): 183-188.

[8]

Correia B, Pintó-Marijuan M, Neves L, Brossa R, Dias MC, Costa A, Castro BB, Araujo C, Satos C, Chaves MM, Pinto G. Water stress and recovery in the performance of two Eucalyptus globulus clones: physiological and biochemical profiles. Physiol Plant, 2014, 150: 580-592.

[9]

Costa e Silva F, Shvaleva A, Maroco JP, Almeida MH, Chaves MM, Pereira JS. Responses to water stress in two Eucalyptus globulus clones differing in drought tolerance. Tree Physiol, 2004, 24(10): 1165-1172.

[10]

Gindaba J, Rozanov A, Negash L. Photosynthetic gas exchange, growth and biomass allocation of two Eucalyptus and three indigenous tree species of Ethiopia under moisture deficit. For Ecol Manag, 2005, 205: 127-138.

[11]

Gonçalves MR, Passos CAM. Crescimento de cinco espécies de eucalipto submetidas a déficit hídrico em dois níveis de fósforo. Ciênc Florest, 2000, 10(2): 145-161.

[12]

Gucci R, Massai R, Xilovannis C, Flores JA. The effect of drought and vapour pressure deficit on gas exchange of young kiwi fruit (Actinidia deliciosa var. deliciosa) vines. Ann Bot, 1996, 77: 605-613.

[13]

Hasse G. Eucalipto: histórias de um imigrante vegetal, 2006, Porto Alegre: JÁ Editores 127

[14]

Iba. Brazilian tree industry—report 2015, 2015, Brasilia: Brazilian Tree Industry 62

[15]

Kozlowski TT, Kramer PJ, Pallardy SG. The physiological ecology of woody plants, 1991, London: Academic Press 657

[16]

Krieg DR (1993). Stress tolerance mechanisms in above ground organs. pp 65–79. In: Proceedings of the workshop on adaptation of plants to soil stress. INTSORMIL, Nebraska, p 348

[17]

Lambers H, Chapin FS, Pons TL. Plant physiological ecology, 1998, Berlin: Springer 540

[18]

Larcher W. Ecofisiologia vegetal, 2006 3 São Carlos: Ed. Rima 550

[19]

Lawlor DW, Tezara W. Causes of decreased photosynthetic rate and metabolic capacity in water-deficient leaf cells: a critical evaluation of mechanisms and integration of processes. Ann Bot, 2009, 103(4): 543-549.

[20]

Li C. Some aspects of leaf water relations in four provenances of Eucalyptus microtheca seedlings. For Ecol Manag, 1998, 111(2–3): 303-308.

[21]

Li C, Berninger F, Koskela J, Sonninen E. Drought responses of Eucalyptus microtheca provenances depend on seasonality of rainfall in their place of origin. Aust J Plant Physiol, 2000, 27(3): 231-238.

[22]

Marenco RA, Lopes NF. Fisiologia vegetal: fotossíntese, respiração, relações hídricas e nutrição mineral, 2007, Viçosa: Editora UFV 469

[23]

Mora AL, Garcia CH. A Cultura do Eucalipto no Brasil—eucalypt cultivation in Brazil, 2000, São Paulo: Ed. Sociedade Brasileira de Silvicultura 112

[24]

Nautiyal S, Badola HK, Pal M, Negi DS. Plant responses to water stress: changes in growth dry matter production, stomatal frequency and leaf anatomy. Biol Plant, 1994, 36: 91-97.

[25]

Navarrete-Campos D, Bravo LA, Rubilar RA, Emhart V, Sanhueza R. Drought effects on water use efficiency, freezing tolerance and survival of Eucalyptus globulus and Eucalyptus globulus × nitens cuttings. New For, 2013, 44(1): 119-134.

[26]

Ngugi MR, Doley D, Hunt MA, Dart P, Ryan P. Leaf water relations of Eucalyptus cloeziana and Eucalyptus argophloi ain response to water deficit. Tree Physiol, 2003, 23: 335-343.

[27]

Norby RJ, Luo Y. Evaluating ecosystem responses to rising atmospheric CO2 and global warming in a multi-factor world. New Phytol, 2004, 162: 281-293.

[28]

O’Grady AP, Worledgeb D, Battagliab M. Constraints on transpiration of Eucalyptus globules in southern Tasmania, Australia. Agric For Meteorol, 2008, 148: 453-465.

[29]

Pereira AR, Angelocci LR, Sentelhas PC. Agrometeorologia: fundamentos e aplicações práticas, 2002, Guaíba: Ed. Agropecuária 478

[30]

Shvaleva AL, Costa e Silva F, Breia E, Jouve J, Hausman JF, Almeida MH, Maroco JP, Rodrigues ML, Pereira JS, Chaves MM. Metabolic responses to water deficit in two Eucalyptus globulus clones with contrasting drought sensitivity. Tree Physiol, 2006, 26: 239-248.

[31]

Taiz L, Zeiger E. Fisiologia Vegetal, 2013 5 Piracicaba: Ed. Artmed 918

[32]

Tatagiba SD, Pezzopane JEM, dos Reis EF, Dardengo MCJD, Effgen TAM. Comportamento fisiológico de dois clones de Eucalyptus na época seca e chuvosa. Cerne, 2007, 13: 149-159.

[33]

Tatagiba SD, Pezzopane JEM, dos Reis EF. Relações hídricas e trocas gasosas na seleção precoce de clones de eucalipto para ambientes com diferenciada disponibilidade de água no solo. Floresta, 2008, 38: 387-400.

[34]

Tatagiba SD, Pezzopane JEM, Reis EF, Penchel RM. Variabilidade diurna e sazonal das trocas gasosas e do potencial de água das folhas de clones de Eucalyptus. Rev Eng Agric, 2008, 16(2): 225-237.

[35]

Thomas DS, Eamus D, Shanahan S. Influence of season, drought and xylem ABA on stomatal responses to leaf-to-air vapour pressure difference of trees of the Australian wet-dry tropics. Aust J Bot, 2000, 48: 143-151.

[36]

Tonello KC, Teixeira Filho J. Mudança de escala da transpiração foliar e condutância estomática de dois clones de Eucalyptus grandis x Eucalyptus urophylla em função de variáveis ambientais. Sci For, 2011, 39(90): 253-264.

[37]

Tonello KC, Teixeira Filho J. Ecofisiologia de três espécies arbóreas nativas da mata Atlântica do Brasil em diferentes regimes de água. Irriga, 2012, 17: 85-101.

[38]

Vellini ALT, de Paula NF, da Costa Aguiar Alves PL, Pavani LC, Bonine CAV, Scarpinati EA, de Paula RC. Respostas fisiológicas de diferentes clones de eucalipto sob diferentes regimes de irrigação. Rev Árvore, 2008, 32: 651-663.

[39]

Villar E, Klopp C, Noirot C, Novaes E, Kirst M, Plomion C, Gion JM. RNA-Seq reveals genotype-specific molecular responses to water deficit in eucalyptus. BMC Genom, 2011, 12(538): 1-18.

AI Summary AI Mindmap
PDF

133

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/