Effect of environmental factors on species diversity of the Yenice Hot Spot Forests in Turkey

Sevda Türkiş , Emire Elmas

Journal of Forestry Research ›› 2018, Vol. 29 ›› Issue (6) : 1719 -1730.

PDF
Journal of Forestry Research ›› 2018, Vol. 29 ›› Issue (6) : 1719 -1730. DOI: 10.1007/s11676-018-0595-8
Original Paper

Effect of environmental factors on species diversity of the Yenice Hot Spot Forests in Turkey

Author information +
History +
PDF

Abstract

We quantified the diversity of vascular plant species and described soil properties and topographical and climatic conditions of the Çitdere and Kavakli Nature Reserves in the Yenice Forest of Turkey. We used the Shannon–Weiner and Simpson’s indices of diversity, Margalef’s index of species richness and Pielou’s evenness index to quantify the structure of vascular plant assemblages. We measured soil parameters (NO3 , NH4 +, available P, Mg++, K+, Na+, Ca++, organic matter, pH, soil moisture), elevation, slope gradient and aspect and their correlations with plant community parameters. In total, we recorded and identified 207 species and subspecies in the study area. Species cover, richness and diversity indices varied significantly by vegetation type (P < 0.01). Available NO3 and Ca++ in the soil were important factors for the area and species representation in the species-environment correlations estimated for the Kavaklı area. Available NO3 , pH, organic matter, Ca++ and K+ in the soil were important factors for the area and species representation in the species-environment correlations analysed for the Çitdere area.

Keywords

Diversity / Forest ecosystems / Yenice hotspot / Species richness

Cite this article

Download citation ▾
Sevda Türkiş, Emire Elmas. Effect of environmental factors on species diversity of the Yenice Hot Spot Forests in Turkey. Journal of Forestry Research, 2018, 29(6): 1719-1730 DOI:10.1007/s11676-018-0595-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abourouh M, Najim L. Culture in vitro de fragments de cotyledons des plantules de Cedrus atlantica Manetti. Saussurea, 1990, 21: 75-80.

[2]

Ahokas H. Acidification of forest top soils in 60 years to the southwest of Helsinki. For Ecol Manag, 1997, 94(1–3): 187-193.

[3]

Aksoy H. Yenice Orman İşletmesindeki Meşe ve Porsuk Bâkir Orman Kalıntıları Örnekleriyle Orman Rezervleri. İstanb Üniversitesi Orman Fakültesi Dergisi, 1985, 31-1/B: 59-74.

[4]

Augusto L, Ranger J, Binkley D, Rothe A. Impact of several common tree species of European temperate forests on soil fertility. Ann For Sci, 2002, 59(3): 233-253.

[5]

Beers TW, Dress PE, Wensel LC. Aspect transformation in site productivity research. J Forest, 1966, 64: 691-692.

[6]

Braun-Blanquet J. Plant sociology: the study of plant communities, 1932, New York: McGraw-Hill 438

[7]

Chapin FS III, Moilanen L, Kielland K. Preferential use of organic nitrogen for growth by a non-mycorrhizal arctic sedge. Nature, 1993, 361: 150-153.

[8]

Conservation International (2005) Map of biodiversity hotspots. http://www.conservation.org/Documents/cihotspotmap.pdf. Accessed 13 Feb 2011

[9]

Davis PH (1965–1988) Flora of Turkey and the East Aegean Island, vol 1–10. Edinburgh University Press, Edinburgh

[10]

Franklin O, Näsholm T, Högberg P, Högberg MN. Forests trapped in nitrogen limitation—an ecological market perspective on ectomycorrhizal symbiosis. New Phytol, 2014, 203(2): 657-666.

[11]

Gundersen P, Emmett BA, Kjønaas OJ, Koopmans CJ, Tietema A. Impact of nitrogen deposition on nitrogen cycling in forests: a synthesis of NITREX data. For Ecol Manag, 1998, 101: 37-55.

[12]

Hobbie SE. Plant species effects on nutrient cycling: revisiting litter feedbacks. Trends Ecol Evol, 2015, 30(6): 357-363.

[13]

Jacob M, Weland N, Platner C, Schaefer M, Leuschner C, Thomas FM. Nutrient release from decomposing leaf litter of temperate deciduous forest trees along a gradient of increasing tree species diversity. Soil Biol Biochem, 2009, 41(10): 2122-2130.

[14]

Kacar B. Toprak Analizleri, 2009, Ankara: Nobel Yayın Dağıtım 467s

[15]

Karaöz Ö. Belgrad Ormanı’nda Bazı İğne Yapraklı Ve Genişyapraklı Orman Ekosistemlerinın Onemli Edafikozellikleri İle Bitkisel Kutle Karakteristikleri Bakımından Karşılaştırılması. J Fac For Istanb Univ, 1988, 38(1): 942-951.

[16]

Lise Y. Yenice Ormanları, 2005, Istanbui: National Geographic Turkey.

[17]

Mittermeier RA, Gil PR, Hoffman M, Pilgrim J, Brooks T, Mittermeier JC, Lamoreux J, da Fonseca GAB. Hotspots revisited: Earth’s biologically richest and most endangered terrestrial ecoregions, 2005, Amsterdam: Amsterdam University Press.

[18]

Noble AD, Randall PJ. Alkalinity effects of different tree litters incubated in an acid soil of NSW, Australia. Agrofor Syst, 1999, 46: 147-160.

[19]

Nordin A, Högberg P, Näsholm T. Soil nitrogen form and plant nitrogen uptake along a boreal forest productivity gradient. Oecologia, 2001, 129(1): 125-132.

[20]

Olsen SR, Cole CV, Watanabe FS, Dean LA (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. US Department of Agriculture Circular 939

[21]

Özalp G. Çitdere (Yenice-Zonguldak) bölgesindeki orman toplulukları ve silvikültürel değerlendirilmesi. İstanb Üniversitesi Orman Fakültesi Dergisi, 1993, 42: 120-157.

[22]

Özhatay N, Byfield A, Atay S. Türkiye’ nin 122 önemli bitki alanı, 2005, İstanbul: WWF Türkiye (Doğal Hayatı Koruma Vakfı) yayını.

[23]

Rashid MH, Rahman MA, Wilcock CC. Diversity, ecology, distribution and ethnobotany of the Apocynaceae of Bangladesh. Bangladesh J Plant Taxon, 2000, 7(2): 59-76.

[24]

Reich PB, Oleksyn J, Modrzynski J, Mrozinski P, Hobbie SE, Eissenstat DM, Chorover J, Chadwick O, Hale CM, Tjoelker MG. Linking litter calcium, earthworm and soil properties: a common garden test with 14 tree species. Ecol Lett, 2005, 8: 811-818.

[25]

Richards LA (1969) Diagnosis and improvement of saline and alkali soils. United States Department of Agriculture Handbook 60, 94

[26]

Runge M. Pirson A, Zimmermann MH. Physiology and ecology of nitrogen nutrition. Physiological plant ecology III, 1983, Berlin: Springer 163 200

[27]

Singer MJ, Donald NM. Soils: an introduction, 1999, Upper Saddle River: Prentice Hall.

[28]

Ste-Marie C, Paré D. Soil, pH and N availability effects on net nitrification in the forest floors of a range of boreal forest stands. Soil Biol Biochem, 1999, 31(11): 1579-1589.

[29]

Tamm CO. Nitrogen in terrestrial ecosystems: questions of productivity, vegetational changes and ecosystem stability, 1991, New York: Springer

[30]

ter Braak CJF. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology, 1986, 67: 1167-1179.

[31]

Walkley A, Black LA. An examination of Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci, 1934, 39: 29-38.

[32]

Whittaker RH. Evolution of species diversity in land communities. Evol Biol, 1977, 10: 1-67.

AI Summary AI Mindmap
PDF

183

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/