Representative heights for assessing whole-tree values of cell-type proportions in Eucalyptus camaldulensis and E. globulus

Jyunichi Ohshima , Kazuya Iizuka , Futoshi Ishiguri , Shinso Yokota , Toshihiro Ona

Journal of Forestry Research ›› 2019, Vol. 31 ›› Issue (3) : 885 -900.

PDF
Journal of Forestry Research ›› 2019, Vol. 31 ›› Issue (3) : 885 -900. DOI: 10.1007/s11676-018-00871-z
Original Paper

Representative heights for assessing whole-tree values of cell-type proportions in Eucalyptus camaldulensis and E. globulus

Author information +
History +
PDF

Abstract

Eucalyptus camaldulensis Dehnh. and E. globulus Labill. are economically important species for wood and pulpwood materials. Representative heights for assessing whole-tree values of cell-type proportions (vessels, fibers, ray and axial parenchyma percentages) using increment cores were examined by analysis of within-tree variations. Pattern differences were evaluated between trees and species in both radial and axial directions by statistical data analysis (Moses test). In E. camaldulensis, within-tree variation of vessel percentage was generally higher in the upper and outer regions of the trunk. In contrast, E. globulus within-tree variation was unclear. In both species, although no clear pattern of fiber percentages was observed, within-tree variations of ray and axial parenchyma levels were higher in the lower and inner regions. Significant differences in patterns were observed in the axial variation between species for vessel percentages and in the radial variation between trees of E. camaldulensis for ray parenchyma percentages. The representative heights for assessing whole-tree cell-type proportions were 0.8 m above the ground for E. camaldulensis and 2.8 m for E. globulus, regardless of differences in tree height and pattern of within-tree variation of cell-type proportions.

Keywords

Eucalyptus / Cell-type proportion / Within-tree variation / Representative height / Quality breeding

Cite this article

Download citation ▾
Jyunichi Ohshima, Kazuya Iizuka, Futoshi Ishiguri, Shinso Yokota, Toshihiro Ona. Representative heights for assessing whole-tree values of cell-type proportions in Eucalyptus camaldulensis and E. globulus. Journal of Forestry Research, 2019, 31(3): 885-900 DOI:10.1007/s11676-018-00871-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Albaugh JM, Dye PJ, King JS. Eucalyptus and water use in South Africa. Int J For Res, 2013, 2013: 1-11.

[2]

Alves ES, Longui EL, Amano E. Pernambuco wood (Caesalpinia echinata) used in the manufacture of bows for string instruments. IAWA J, 2008, 29(3): 323-335.

[3]

Amidon TE. Effect of the wood properties of hardwoods on kraft paper properties. Tappi, 1981, 64(3): 123-126.

[4]

Bendtsen BA. Properties of wood from improved and intensively managed trees. For Prod J, 1978, 28(10): 61-72.

[5]

Chowdhury MQ, Ishiguri F, Hiraiwa T, Matsumoto K, Takashima Y, Iizuka K, Yokota S, Yoshizawa N. Variation in anatomical properties and correlations with wood density and compressive strength in Casuarina equisetifolia growing in Bangladesh. Aust For, 2012, 75(2): 95-99.

[6]

Colley J. The influence of vessel elements on the picking tendency of eucalypt pulps. Paper Technol, 1973, 14(5): 293-296.

[7]

Colley J, Ward J. Studies on the vessel picking tendency of Eucalyptus deglupta kraft pulp. Appita, 1976, 29(5): 344-348.

[8]

Denne MP, Hale MD. Cell wall and lumen percentages in relation to wood density of Nothofagus nervosa. IAWA J, 1999, 20(1): 23-36.

[9]

Downes G, Hudson I, Raymond C, Dean G, Michell T, Schimleck L, Evans R, Muneri A. Sampling plantation eucalypts for wood and fibre properties, 1997, Melbourne: CSIRO Publications 144

[10]

Henry RJ. Genetics, genomics and breeding of eucalypts, 2014, Boca Raton: CRC Press 205

[11]

Hillis WE. Hillis WE, Brown AG. Wood quality and utilization. Eucalyptus for wood production, 1978, Melbourne: CSIRO Publications 259 289

[12]

Hillis WE. Werner D, Muller P. Fast growing eucalypts and some of their characteristics. Fast growing trees and nitrogen fixing trees, 1990, Stuttgart: Gustav Fischer Verlag 184 193

[13]

Hudson I, Wilson L, Van Beveren K. Vessel and fibre property in Eucalyptus globulus and Eucalyptus nitens: some preliminary results. IAWA J, 1998, 19(2): 111-130.

[14]

Hudson I, Wilson L, Van Beveren K. Between species differences in whole tree maps of fibre properties in E. nitens and E. globulus—utility of control deviation charts to assess optimal sampling height. Appita J, 2001, 54(2): 182-189.

[15]

Igartua DV, Monteoliva SE, Monterubbianesi MG, Villegas MS. Basic density and fibre length at breast height of Eucalyptus globulus ssp. globulus for parameter prediction of the whole tree. IAWA J, 2003, 24(2): 173-184.

[16]

Ismail J, Jusoh MZ, Sahri MH. Anatomical variation in planted kelempayan (Neolamarckia cadamba, Rubiaceae). IAWA J, 1995, 16(3): 227-287.

[17]

Jorge F, Quilhó T, Pereira H. Variations of fibre length in wood and bark in Eucalyptus globulus. IAWA J, 2000, 21(1): 41-48.

[18]

Leal S, Pereira H, Grabner M, Wimmer R. Clonal and site variation of vessels in 7-year-old Eucalyptus globulus. IAWA J, 2003, 24(2): 185-195.

[19]

Malan FS. Genetic variation in some growth and wood properties among 18 full-sib families of South African grown Eucalyptus grandis: a preliminary investigation. S Afr For J, 1988, 146(1): 38-43.

[20]

Malan FS. Variation, association and inheritance of juvenile wood properties of Eucalyptus grandis Hill ex Maiden with special reference to the effect of rate of growth. S Afr For J, 1991, 157(1): 16-23.

[21]

Malan FS, Gerischer GFR. Wood property differences in South African grown Eucalyptus grandis trees of different growth stress intensity. Holzforschung, 1987, 41(6): 331-335.

[22]

Malan FS, Hoon M. Effect of initial spacing and thinning on some wood properties of Eucalyptus grandis. S Afr For J, 1992, 163(1): 13-20.

[23]

Malan FS, Male JR, Venter JSM. Relationship between the properties of eucalyptus wood and some chemical, pulp and paper properties. Pap S Afr, 1994, 2: 6-16.

[24]

McKenzie HM, Shelbourne CJA, Kimberley MO, McKinley RS, Britton RAJ. Processing young plantation-grown Eucalyptus nitens for solid-wood products. 2: Predicting product quality from tree, increment core, disc, and 1-m billet properties. NZ J For Sci, 2003, 33(1): 79-113.

[25]

Moses LE. A two-sample test. Psychometrika, 1952, 17(3): 239-247.

[26]

Muneri A, Asada T, Tomita K, Kusunoki K, Szota C. Between-tree variation in stem volume, wood density, fibre length and kraft pulping properties of’ Eucalyptus globulus and the utility of field-portable NIR spectroscopy and wood cores in evaluating pulpwood quality properties of standing trees. Appita J, 2011 64 4 356

[27]

Myburg AA, Grattapaglia D, Tuskan GA, Hellsten U, Hayes RD, Grimwood J The genome of Eucalyptus grandis. Nature, 2014, 510: 356-362.

[28]

Nicholls JWP, Phillips FH (1970) Preliminary study of coppice-grown Eucalyptus viminalis as a source chip materials. Technical papers. No. 58, Division of Forest Products, CSIRO, Melbourne, Australia

[29]

Nolan G, Washusen R, Jennings S, Greaves B, Parsons M (2005) Eucalypt plantations for solid wood products in Australia—a review. Project no. PN04.3002, Forest and Wood Products Research and Development Corporation, Melbourne, Australia

[30]

Ogata Y. Studies of vessel elements on Eucalyptus woods. Part 2. Sheetforming studies and chemical analysis of Eucalyptus vessel elements. Jpn Tappi, 1978, 32(6): 377-386.

[31]

Ohshima J, Yokota S, Yoshizawa N, Ona T. Within-tree variation of vessel morphology and frequency and representative heights for estimating the whole-tree value in Eucalyptus camaldulensis and E. globulus. Appita J, 2004, 57(1): 64-69.

[32]

Ohshima J, Yokota S, Yoshizawa N, Ona T. Examination of within-tree variations and the heights representing whole-tree values of derived wood properties for quasi-non-destructive breeding of Eucalyptus camaldulensis and Eucalyptus globulus as quality pulpwood. J Wood Sci, 2005, 51(2): 102-111.

[33]

Ohshima J, Yokota S, Yoshizawa N, Ona T. Representative heights for assessing whole-tree values and the within-tree variations of derived wood properties in Eucalyptus camaldulensis and E. globulus. Wood Fiber Sci, 2005, 37(1): 51-65.

[34]

Ona T, Sonoda T, Ito K, Shibata M, Tamai Y, Kojima Y. Use of the radially divided increment core method to assess pulpwood quality for eucalypt breeding in E. camaldulensis and E. globulus. Appita J, 1996, 49(5): 325-331.

[35]

Ona T, Sonoda T, Ito K, Shibata M, Tamai Y, Kojima Y, Ohshima J, Yokota S, Yoshizawa N. Investigation of relationships between cell and pulp properties in Eucalyptus by examination of within-tree variations. Wood Sci Technol, 2001, 35(3): 229-243.

[36]

Palermo GDM, Latorraca JDF, de Carvalho AM, Calonego FW, Severo ETD. Anatomical properties of Eucalyptus grandis wood and transition age between the juvenile and mature woods. Eur J Wood Prod, 2015, 73(6): 775-780.

[37]

Pirralho M, Flores D, Sousa VB, Quilhó T, Knapic S, Pereira H. Evaluation on paper making potential of nine Eucalyptus species based on wood anatomical features. Ind Crop Prod, 2014, 54: 327-334.

[38]

R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/. Accessed 5 Jan 2015

[39]

Ramírez M, Rodríguez J, Peredo M, Valenzuela S, Mendonça R. Wood anatomy and biometric parameters variation of Eucalyptus globulus clones. Wood Sci Technol, 2009, 43(1): 131-141.

[40]

Rao RV, Shashikala S, Sreevani P, Kothiyal V, Sarma CR, Lal P. Within tree variation in anatomical properties of some clones of Eucalyptus tereticornis Sm. Wood Sci Technol, 2002, 36(3): 271-285.

[41]

Raymond CA. Genetics of Eucalyptus wood properties. Ann For Sci, 2002, 59(5–6): 525-531.

[42]

Raymond CA, Schimleck LR, Muneri A, Michell AJ. Nondestructive sampling of Eucalyptus globulus and E. nitens for wood properties. III. Predicted pulp yield using near infrared reflectance analysis. Wood Sci Technol, 2001, 35(3): 203-215.

[43]

Sardinha RMA, Hughes JF (1979) Wood properties variation of Eucalyptus saligna Sm. from Angola. Anais doinstituto Superior de Agronomia, Univ. Tecnica de Lisboa 37:81–101

[44]

Sato S. Breeding strategy for the pulp quality improvement in Eucalyptus trees. Jpn Tappi J, 2007, 61(1): 79-83.

[45]

Schimleck LR, Rezende GD, Demuner BJ, Downes GM. Estimation of whole-tree wood quality traits using near infrared spectra from increment cores. Appita J, 2006, 59(3): 231-236.

[46]

Tarrés Q, Pellicer N, Balea A, Merayo N, Negro C, Blanco A, Delgado-Aguilar M, Mutjé P. Lignocellulosic micro/nanofibers from wood sawdust applied to recycled fibers for the production of paper bags. Int J Biol Macromol, 2017, 105: 664-670.

[47]

Taylor FW. Anatomical wood properties of South African grown Eucalyptus grandis. S Afr For J, 1973, 84: 20-24.

[48]

Taylor FW. Variations in the anatomical properties of South African grown Eucalyptus grandis. Appita, 1973, 27(3): 171-178.

[49]

Taylor FW, Wooten TE. Wood property variation of Mississippi delta hardwoods. Wood Fiber Sci, 1973, 5(1): 2-13.

[50]

Uetimane E Jr, Ali AC. Relationship between mechanical properties and selected anatomical features of ntholo (Pseudolachnostylis maprounaefolia). J Trop For Sci, 2011, 23(2): 166-176.

[51]

Vurdu H, Bensend DW. Proportions and types of cells in stems, banches, and roots of European black alder (Alnus glutinosa L. Gaertn.). Wood Sci, 1980, 13(1): 36-40.

[52]

Washusen R (2011) Processing plantation grown Eucalyptus globulus and Eucalyptus nitens for solid wood products—is it viable? Technical report no. 209, Cooperative Research Centre for Forestry, Hobart, Australia

[53]

Wu YQ, Hayashi K, Liu Y, Cai Y, Sugimori M. Relationships of anatomical characteristics versus shrinkage and collapse properties in plantation-grown eucalypt wood from China. J Wood Sci, 2006, 52(3): 187-194.

[54]

Zhang SY, Zhong Y. Structure–property relationship of wood in East-Liaoning oak. Wood Sci Technol, 1992, 26(2): 139-149.

[55]

Zobel BJ, van Buijtenen JP. Wood variation: its causes and control, 1989, Berlin: Springer 363

AI Summary AI Mindmap
PDF

127

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/