Genome engineering technologies for targeted genetic modification in plants

Wei Tang , Anna Y. Tang

Journal of Forestry Research ›› 2018, Vol. 29 ›› Issue (4) : 875 -887.

PDF
Journal of Forestry Research ›› 2018, Vol. 29 ›› Issue (4) : 875 -887. DOI: 10.1007/s11676-017-0588-z
Review Article

Genome engineering technologies for targeted genetic modification in plants

Author information +
History +
PDF

Abstract

Well-established targeted technologies to engineer genomes such as zinc-finger nuclease-based editing (ZFN), transcription activator-like effector nuclease-based editing (TALEN), and clustered regularly interspaced short palindromic repeats and associated protein system-based editing (CRISPR/Cas) are proving to advance basic and applied research in numerous plant species. Compared with systems using ZFNs and TALENs, the most recently developed CRISPR/Cas system is more efficient due to its use of an RNA-guided nuclease to generate double-strand DNA breaks. To accelerate the applications of these technologies, we provide here a detailed overview of these systems, highlight the strengths and weaknesses of each, summarize research advances made with these technologies in model and crop plants, and discuss their applications in plant functional genomics. Such targeted approaches for genetically modifying plants will benefit agricultural production in the future.

Keywords

Double-stranded DNA break / Genome editing / CRISPR system / Transcription activator-like effector nucleases / Zinc-finger nucleases

Cite this article

Download citation ▾
Wei Tang, Anna Y. Tang. Genome engineering technologies for targeted genetic modification in plants. Journal of Forestry Research, 2018, 29(4): 875-887 DOI:10.1007/s11676-017-0588-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Acevedo-Garcia J, Kusch S, Panstruga R. Magical mystery tour: MLO proteins in plant immunity and beyond. New Phytol, 2014, 204: 273-281.

[2]

Ainley WM, Sastry-Dent L, Welter ME, Murray MG, Zeitler B, Amora R, Corbin DR, Miles RR, Arnold NL, Strange TL, Simpson MA, Cao Z, Carroll C, Pawelczak KS, Blue R, West K, Rowland LM, Perkins D, Samuel P, Dewes CM, Shen L, Sriram S, Evans SL, Rebar EJ, Zhang L, Gregory PD, Urnov FD, Webb SR, Petolino JF. Trait stacking via targeted genome editing. Plant Biotechnol J, 2013, 11: 1126-1134.

[3]

Ali Z, Abul-Faraj A, Piatek M, Mahfouz MM. Activity and specificity of TRV-mediated gene editing in plants. Plant Signal Behav, 2015, 10: e1044191.

[4]

Ali Z, Abulfaraj A, Idris A, Ali S, Tashkandi M, Mahfouz MM. CRISPR/Cas9-mediated viral interference in plants. Genome Biol, 2015, 16: 238.

[5]

Anand P, Schug A, Wenzel W. Structure based design of protein linkers for zinc finger nuclease. FEBS Lett, 2013, 587: 3231-3235.

[6]

Aouida M, Li L, Mahjoub A, Alshareef S, Ali Z, Piatek A, Mahfouz MM. Transcription activator-like effector nucleases mediated metabolic engineering for enhanced fatty acids production in Saccharomyces cerevisiae. J Biosci Bioeng, 2015, 120: 364-371.

[7]

Auer TO, Duroure K, De Cian A, Concordet JP, Del Bene F. Highly efficient CRISPR/Cas9-mediated knock-in in zebrafish by homology-independent DNA repair. Genome Res, 2014, 24: 142-153.

[8]

Baltes NJ, Gil-Humanes J, Cermak T, Atkins PA, Voytas DF. DNA replicons for plant genome engineering. Plant Cell, 2014, 26: 151-163.

[9]

Barrangou R. Diversity of CRISPR–Cas immune systems and molecular machines. Genome Biol, 2015, 16: 247.

[10]

Barrangou R, Marraffini LA. CRISPR–Cas systems: prokaryotes upgrade to adaptive immunity. Mol Cell, 2014, 54: 234-244.

[11]

Bassett AR, Liu JL. CRISPR/Cas9 and genome editing in Drosophila. J Genet Genomics, 2014, 41: 7-19.

[12]

Bassett AR, Tibbit C, Ponting CP, Liu JL. Highly efficient targeted mutagenesis of Drosophila with the CRISPR/Cas9 system. Cell Rep, 2013, 4: 220-228.

[13]

Bassett AR, Tibbit C, Ponting CP, Liu JL. Mutagenesis and homologous recombination in Drosophila cell lines using CRISPR/Cas9. Biol Open, 2014, 3: 42-49.

[14]

Belhaj K, Chaparro-Garcia A, Kamoun S, Nekrasov V. Plant genome editing made easy: targeted mutagenesis in model and crop plants using the CRISPR/Cas system. Plant Methods, 2013, 9: 39.

[15]

Blackburn PR, Campbell JM, Clark KJ, Ekker SC. The CRISPR system-keeping zebrafish gene targeting fresh. Zebrafish, 2013, 10: 116-118.

[16]

Boehm CR, Ueda M, Nishimura Y, Shikanai T, Haseloff J. A cyan fluorescent reporter expressed from the chloroplast genome of Marchantia polymorpha. Plant Cell Physiol, 2016, 57: 291-299.

[17]

Bondy-Denomy J, Davidson AR. To acquire or resist: the complex biological effects of CRISPR–Cas systems. Trends Microbiol, 2014, 22: 218-225.

[18]

Bortesi L, Fischer R. The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol Adv, 2015, 33: 41-52.

[19]

Budhagatapalli N, Rutten T, Gurushidze M, Kumlehn J, Hensel G. Targeted modification of gene function exploiting homology-directed repair of TALEN-mediated double-strand breaks in barley. G3 (Bethesda), 2015, 5: 1857-1863.

[20]

Butler NM, Atkins PA, Voytas DF, Douches DS. Generation and inheritance of targeted mutations in potato (Solanum tuberosum L.) using the CRISPR/Cas system. PLoS ONE, 2015, 10: e0144591.

[21]

Cai Y, Chen L, Liu X, Sun S, Wu C, Jiang B, Han T, Hou W. CRISPR/Cas9-mediated genome editing in soybean hairy roots. PLoS ONE, 2015, 10: e0136064.

[22]

Carter J, Wiedenheft B. SnapShot: CRISPR-RNA-guided adaptive immune systems. Cell, 2015 163 260–260 e261

[23]

Chandrasegaran S, Carroll D. Origins of programmable nucleases for genome engineering. J Mol Biol, 2015, 428: 963-989.

[24]

Chandrasekaran J, Brumin M, Wolf D, Leibman D, Klap C, Pearlsman M, Sherman A, Arazi T, Gal-On A. Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology. Mol Plant Pathol, 2016, 17: 1140-1153.

[25]

Charpentier E, Marraffini LA. Harnessing CRISPR–Cas9 immunity for genetic engineering. Curr Opin Microbiol, 2014, 19: 114-119.

[26]

Chen K, Gao C. Targeted genome modification technologies and their applications in crop improvements. Plant Cell Rep, 2014, 33: 575-583.

[27]

Chylinski K, Makarova KS, Charpentier E, Koonin EV. Classification and evolution of type II CRISPR–Cas systems. Nucleic Acids Res, 2014, 42: 6091-6105.

[28]

Clasen BM, Stoddard TJ, Luo S, Demorest ZL, Li J, Cedrone F, Tibebu R, Davison S, Ray EE, Daulhac A, Coffman A, Yabandith A, Retterath A, Haun W, Baltes NJ, Mathis L, Voytas DF, Zhang F. Improving cold storage and processing traits in potato through targeted gene knockout. Plant Biotechnol J, 2016, 14: 169-176.

[29]

Cong L, Zhang F. Genome engineering using CRISPR–Cas9 system. Methods Mol Biol, 2015, 1239: 197-217.

[30]

Cradick TJ, Fine EJ, Antico CJ, Bao G. CRISPR/Cas9 systems targeting beta-globin and CCR5 genes have substantial off-target activity. Nucleic Acids Res, 2013, 41: 9584-9592.

[31]

de Lange O, Binder A, Lahaye T. From dead leaf, to new life: TAL effectors as tools for synthetic biology. Plant J, 2014, 78: 753-771.

[32]

Dow LE, Fisher J, O’Rourke KP, Muley A, Kastenhuber ER, Livshits G, Tschaharganeh DF, Socci ND, Lowe SW. Inducible in vivo genome editing with CRISPR–Cas9. Nat Biotechnol, 2015, 33: 390-394.

[33]

Droz-Georget Lathion S, Rochat A, Knott G, Recchia A, Martinet D, Benmohammed S, Grasset N, Zaffalon A, Besuchet Schmutz N, Savioz-Dayer E, Beckmann JS, Rougemont J, Mavilio F, Barrandon Y. A single epidermal stem cell strategy for safe ex vivo gene therapy. EMBO Mol Med, 2015, 7: 380-393.

[34]

Du H, Zeng X, Zhao M, Cui X, Wang Q, Yang H, Cheng H, Yu D. Efficient targeted mutagenesis in soybean by TALENs and CRISPR/Cas9. J Biotechnol, 2016, 217: 90-97.

[35]

Duan YB, Li J, Qin RY, Xu RF, Li H, Yang YC, Ma H, Li L, Wei PC, Yang JB. Identification of a regulatory element responsible for salt induction of rice OsRAV2 through ex situ and in situ promoter analysis. Plant Mol Biol, 2016, 90: 49-62.

[36]

Duda K, Lonowski LA, Kofoed-Nielsen M, Ibarra A, Delay CM, Kang Q, Yang Z, Pruett-Miller SM, Bennett EP, Wandall HH, Davis GD, Hansen SH, Frodin M. High-efficiency genome editing via 2A-coupled co-expression of fluorescent proteins and zinc finger nucleases or CRISPR/Cas9 nickase pairs. Nucleic Acids Res, 2014, 42: e84.

[37]

Durai S, Mani M, Kandavelou K, Wu J, Porteus MH, Chandrasegaran S. Zinc finger nucleases: custom-designed molecular scissors for genome engineering of plant and mammalian cells. Nucleic Acids Res, 2005, 33: 5978-5990.

[38]

Ebina H, Misawa N, Kanemura Y, Koyanagi Y. Harnessing the CRISPR/Cas9 system to disrupt latent HIV-1 provirus. Sci Rep, 2013, 3: 2510.

[39]

Endo M, Mikami M, Toki S. Multigene knockout utilizing off-target mutations of the CRISPR/Cas9 system in rice. Plant Cell Physiol, 2015, 56: 41-47.

[40]

Fan D, Liu T, Li C, Jiao B, Li S, Hou Y, Luo K. Efficient CRISPR/Cas9-mediated targeted mutagenesis in Populus in the first generation. Sci Rep, 2015, 5: 12217.

[41]

Fauser F, Schiml S, Puchta H. Both CRISPR/Cas-based nucleases and nickases can be used efficiently for genome engineering in Arabidopsis thaliana. Plant J, 2014, 79: 348-359.

[42]

Feng Z, Zhang B, Ding W, Liu X, Yang DL, Wei P, Cao F, Zhu S, Zhang F, Mao Y, Zhu JK. Efficient genome editing in plants using a CRISPR/Cas system. Cell Res, 2013, 23: 1229-1232.

[43]

Forner J, Pfeiffer A, Langenecker T, Manavella PA, Lohmann JU. Germline-transmitted genome editing in Arabidopsis thaliana using TAL-effector-nucleases. PLoS ONE, 2015, 10: e0121056.

[44]

Gao J, Wang G, Ma S, Xie X, Wu X, Zhang X, Wu Y, Zhao P, Xia Q. CRISPR/Cas9-mediated targeted mutagenesis in Nicotiana tabacum. Plant Mol Biol, 2015, 87: 99-110.

[45]

Grosche C, Funk HT, Maier UG, Zauner S. The chloroplast genome of Pellia endiviifolia: gene content, RNA-editing pattern, and the origin of chloroplast editing. Genome Biol Evol, 2012, 4: 1349-1357.

[46]

Gupta RM, Musunuru K. Expanding the genetic editing tool kit: ZFNs, TALENs, and CRISPR–Cas9. J Clin Invest, 2014, 124: 4154-4161.

[47]

Gupta A, Hall VL, Kok FO, Shin M, McNulty JC, Lawson ND, Wolfe SA. Targeted chromosomal deletions and inversions in zebrafish. Genome Res, 2013, 23: 1008-1017.

[48]

Gurr GM, You M. Conservation biological control of pests in the molecular era: new opportunities to address old constraints. Front Plant Sci, 2015, 6: 1255.

[49]

Han J, Zhang J, Chen L, Shen B, Zhou J, Hu B, Du Y, Tate PH, Huang X, Zhang W. Efficient in vivo deletion of a large imprinted lncRNA by CRISPR/Cas9. RNA Biol, 2014, 11: 829-835.

[50]

Hansen K, Coussens MJ, Sago J, Subramanian S, Gjoka M, Briner D. Genome editing with CompoZr custom zinc finger nucleases (ZFNs). J Vis Exp, 2012, 64: e3304.

[51]

Hayashi S, Wakasa Y, Ozawa K, Takaiwa F. Characterization of IRE1 ribonuclease-mediated mRNA decay in plants using transient expression analyses in rice protoplasts. New Phytol, 2016, 210: 1259-1268.

[52]

He Z, Proudfoot C, Mileham AJ, McLaren DG, Whitelaw CB, Lillico SG. Highly efficient targeted chromosome deletions using CRISPR/Cas9. Biotechnol Bioeng, 2015, 112: 1060-1064.

[53]

Hemphill J, Borchardt EK, Brown K, Asokan A, Deiters A. Optical control of CRISPR/Cas9 gene editing. J Am Chem Soc, 2015, 137: 5642-5645.

[54]

Hruscha A, Krawitz P, Rechenberg A, Heinrich V, Hecht J, Haass C, Schmid B. Efficient CRISPR/Cas9 genome editing with low off-target effects in zebrafish. Development, 2013, 140: 4982-4987.

[55]

Hutter G, Bodor J, Ledger S, Boyd M, Millington M, Tsie M, Symonds G. CCR5 targeted cell therapy for HIV and prevention of viral escape. Viruses, 2015, 7: 4186-4203.

[56]

Ikeda T, Tanaka W, Mikami M, Endo M, Hirano HY. Generation of artificial drooping leaf mutants by CRISPR–Cas9 technology in rice. Genes Genet Syst, 2016, 90: 231-235.

[57]

Ito Y, Nishizawa-Yokoi A, Endo M, Mikami M, Toki S. CRISPR/Cas9-mediated mutagenesis of the RIN locus that regulates tomato fruit ripening. Biochem Biophys Res Commun, 2015, 467: 76-82.

[58]

Jabalameli HR, Zahednasab H, Karimi-Moghaddam A, Jabalameli MR. Zinc finger nuclease technology: advances and obstacles in modelling and treating genetic disorders. Gene, 2015, 558: 1-5.

[59]

Jacobs TB, LaFayette PR, Schmitz RJ, Parrott WA. Targeted genome modifications in soybean with CRISPR/Cas9. BMC Biotechnol, 2015, 15: 16.

[60]

Jia H, Wang N. Targeted genome editing of sweet orange using Cas9/sgRNA. PLoS ONE, 2014, 9: e93806.

[61]

Jiang W, Zhou H, Bi H, Fromm M, Yang B, Weeks DP. Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res, 2013, 41: e188.

[62]

Jiang W, Yang B, Weeks DP. Efficient CRISPR/Cas9-mediated gene editing in Arabidopsis thaliana and inheritance of modified genes in the T2 and T3 generations. PLoS ONE, 2014, 9: e99225.

[63]

Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 2012, 337: 816-821.

[64]

Jinek M, East A, Cheng A, Lin S, Ma E, Doudna J. RNA-programmed genome editing in human cells. Elife, 2013, 2: e00471.

[65]

Jinek M, Jiang F, Taylor DW, Sternberg SH, Kaya E, Ma E, Anders C, Hauer M, Zhou K, Lin S, Kaplan M, Iavarone AT, Charpentier E, Nogales E, Doudna JA. Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science, 2014, 343: 1247997.

[66]

Jinkerson RE, Jonikas MC. Molecular techniques to interrogate and edit the Chlamydomonas nuclear genome. Plant J, 2015, 82: 393-412.

[67]

Johnson RA, Gurevich V, Levy AA. A rapid assay to quantify the cleavage efficiency of custom-designed nucleases in planta. Plant Mol Biol, 2013, 82: 207-221.

[68]

Kahlau S, Bock R. Plastid transcriptomics and translatomics of tomato fruit development and chloroplast-to-chromoplast differentiation: chromoplast gene expression largely serves the production of a single protein. Plant Cell, 2008, 20: 856-874.

[69]

Karcher D, Kahlau S, Bock R. Faithful editing of a tomato-specific mRNA editing site in transgenic tobacco chloroplasts. RNA, 2008, 14: 217-224.

[70]

Kim H, Kim JS. A guide to genome engineering with programmable nucleases. Nat Rev Genet, 2014, 15: 321-334.

[71]

Kumar V, Jain M. The CRISPR–Cas system for plant genome editing: advances and opportunities. J Exp Bot, 2015, 66: 47-57.

[72]

Lee J, Chung JH, Kim HM, Kim DW, Kim H. Designed nucleases for targeted genome editing. Plant Biotechnol J, 2016, 14: 448-462.

[73]

Li XJ, Zhang YF, Hou M, Sun F, Shen Y, Xiu ZH, Wang X, Chen ZL, Sun SS, Small I, Tan BC. Small kernel 1 encodes a pentatricopeptide repeat protein required for mitochondrial nad7 transcript editing and seed development in maize (Zea mays) and rice (Oryza sativa). Plant J Cell Mol Biol, 2014, 79: 797-809.

[74]

Li JF, Zhang D, Sheen J. Targeted plant genome editing via the CRISPR/Cas9 technology. Methods Mol Biol, 2015, 1284: 239-255.

[75]

Li Z, Liu ZB, Xing A, Moon BP, Koellhoffer JP, Huang L, Ward RT, Clifton E, Falco SC, Cigan AM. Cas9-guide RNA directed genome editing in soybean. Plant Physiol, 2015, 169: 960-970.

[76]

Liang Z, Zhang K, Chen K, Gao C. Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. J Genet Genomics, 2014, 41: 63-68.

[77]

Liao JC, Hsieh WY, Tseng CC, Hsieh MH. Dysfunctional chloroplasts up-regulate the expression of mitochondrial genes in Arabidopsis seedlings. Photosynth Res, 2016, 127: 151-159.

[78]

Lin CP, Ko CY, Kuo CI, Liu MS, Schafleitner R, Chen LF. Transcriptional slippage and RNA editing increase the diversity of transcripts in chloroplasts: insight from deep sequencing of Vigna radiata genome and transcriptome. PLoS ONE, 2015, 10: e0129396.

[79]

Lowder LG, Zhang D, Baltes NJ, Paul JW 3rd, Tang X, Zheng X, Voytas DF, Hsieh TF, Zhang Y, Qi Y. A CRISPR/Cas9 toolbox for multiplexed plant genome editing and transcriptional regulation. Plant Physiol, 2015, 169: 971-985.

[80]

Luo Y, Liu C, Cerbini T, San H, Lin Y, Chen G, Rao MS, Zou J. Stable enhanced green fluorescent protein expression after differentiation and transplantation of reporter human induced pluripotent stem cells generated by AAVS1 transcription activator-like effector nucleases. Stem Cells Transl Med, 2014, 3: 821-835.

[81]

Ma L, Zhu F, Li Z, Zhang J, Li X, Dong J, Wang T. TALEN-based mutagenesis of lipoxygenase LOX3 enhances the storage tolerance of rice (Oryza sativa) seeds. PLoS ONE, 2015, 10: e0143877.

[82]

Mahfouz MM, Li L, Shamimuzzaman M, Wibowo A, Fang X, Zhu JK. De novo-engineered transcription activator-like effector (TALE) hybrid nuclease with novel DNA binding specificity creates double-strand breaks. Proc Natl Acad Sci USA, 2011, 108: 2623-2628.

[83]

Martin-Ortigosa S, Peterson DJ, Valenstein JS, Lin VS, Trewyn BG, Lyznik LA, Wang K. Mesoporous silica nanoparticle-mediated intracellular Cre protein delivery for maize genome editing via loxP site excision. Plant Physiol, 2014, 164: 537-547.

[84]

Marton I, Zuker A, Shklarman E, Zeevi V, Tovkach A, Roffe S, Ovadis M, Tzfira T, Vainstein A. Nontransgenic genome modification in plant cells. Plant Physiol, 2010, 154: 1079-1087.

[85]

Marton I, Honig A, Omid A, De Costa N, Marhevka E, Cohen B, Zuker A, Vainstein A. From Agrobacterium to viral vectors: genome modification of plant cells by rare cutting restriction enzymes. Int J Dev Biol, 2013, 57: 639-650.

[86]

Michno JM, Wang X, Liu J, Curtin SJ, Kono TJ, Stupar RM. CRISPR/Cas mutagenesis of soybean and Medicago truncatula using a new web-tool and a modified Cas9 enzyme. GM Crops Food, 2015, 6: 243.

[87]

Mikami M, Toki S, Endo M. Comparison of CRISPR/Cas9 expression constructs for efficient targeted mutagenesis in rice. Plant Mol Biol, 2015, 88: 561-572.

[88]

Mikami M, Toki S, Endo M. Parameters affecting frequency of CRISPR/Cas9 mediated targeted mutagenesis in rice. Plant Cell Rep, 2015, 34: 1807-1815.

[89]

Mussolino C, Mlambo T, Cathomen T. Proven and novel strategies for efficient editing of the human genome. Curr Opin Pharmacol, 2015, 24: 105-112.

[90]

Naito Y, Hino K, Bono H, Ui-Tei K. CRISPRdirect: software for designing CRISPR/Cas guide RNA with reduced off-target sites. Bioinformatics, 2015, 31: 1120-1123.

[91]

Nejat N, Rookes J, Mantri NL, Cahill DM. Plant–pathogen interactions: toward development of next-generation disease-resistant plants. Crit Rev Biotechnol, 2016, 37: 229.

[92]

Nekrasov V, Staskawicz B, Weigel D, Jones JD, Kamoun S. Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat Biotechnol, 2013, 31: 691-693.

[93]

Nemudryi AA, Valetdinova KR, Medvedev SP, Zakian SM. TALEN and CRISPR/Cas genome editing systems: tools of discovery. Acta Nat, 2014, 6: 19-40.

[94]

Nicolia A, Proux-Wera E, Ahman I, Onkokesung N, Andersson M, Andreasson E, Zhu LH. Targeted gene mutation in tetraploid potato through transient TALEN expression in protoplasts. J Biotechnol, 2015, 204: 17-24.

[95]

Osakabe Y, Osakabe K. Genome editing with engineered nucleases in plants. Plant Cell Physiol, 2015, 56: 389-400.

[96]

Ousterout DG, Kabadi AM, Thakore PI, Perez-Pinera P, Brown MT, Majoros WH, Reddy TE, Gersbach CA. Correction of dystrophin expression in cells from Duchenne muscular dystrophy patients through genomic excision of exon 51 by zinc finger nucleases. Mol Ther, 2015, 23: 523-532.

[97]

Peng R, Lin G, Li J. Potential pitfalls of CRISPR/Cas9-mediated genome editing. FEBS J, 2015, 283: 1218-1231.

[98]

Petersen B, Niemann H. Advances in genetic modification of farm animals using zinc-finger nucleases (ZFN). Chromosome Res, 2015, 23: 7-15.

[99]

Petersen B, Niemann H. Molecular scissors and their application in genetically modified farm animals. Transgenic Res, 2015, 24: 381-396.

[100]

Petolino JF. Genome editing in plants via designed zinc finger nucleases. In Vitro Cell Dev Biol Plant, 2015, 51: 1-8.

[101]

Puchta H, Fauser F. Gene targeting in plants: 25 years later. Int J Dev Biol, 2013, 57: 629-637.

[102]

Qin Y, Gao WQ. Concise review: patient-derived stem cell research for monogenic disorders. Stem Cells, 2016, 34: 44-54.

[103]

Redel BK, Prather RS. Meganucleases revolutionize the production of genetically engineered pigs for the study of human diseases. Toxicol Pathol, 2015, 44: 428-433.

[104]

Ren X, Yang Z, Xu J, Sun J, Mao D, Hu Y, Yang SJ, Qiao HH, Wang X, Hu Q, Deng P, Liu LP, Ji JY, Li JB, Ni JQ. Enhanced specificity and efficiency of the CRISPR/Cas9 system with optimized sgRNA parameters in Drosophila. Cell Rep, 2014, 9: 1151-1162.

[105]

Reyon D, Khayter C, Regan MR, Joung JK, Sander JD. Engineering designer transcription activator-like effector nucleases (TALENs) by REAL or REAL-Fast assembly. Curr Protoc Mol Biol, 2012

[106]

Ron M, Kajala K, Pauluzzi G, Wang D, Reynoso MA, Zumstein K, Garcha J, Winte S, Masson H, Inagaki S, Federici F, Sinha N, Deal RB, Bailey-Serres J, Brady SM. Hairy root transformation using Agrobacterium rhizogenes as a tool for exploring cell type-specific gene expression and function using tomato as a model. Plant Physiol, 2014, 166: 455-469.

[107]

Sauer NJ, Mozoruk J, Miller RB, Warburg ZJ, Walker KA, Beetham PR, Schopke CR, Gocal GF. Oligonucleotide-directed mutagenesis for precision gene editing. Plant Biotechnol J, 2016, 14: 496-502.

[108]

Sawai S, Ohyama K, Yasumoto S, Seki H, Sakuma T, Yamamoto T, Takebayashi Y, Kojima M, Sakakibara H, Aoki T, Muranaka T, Saito K, Umemoto N. Sterol side chain reductase 2 is a key enzyme in the biosynthesis of cholesterol, the common precursor of toxic steroidal glycoalkaloids in potato. Plant Cell, 2014, 26: 3763-3774.

[109]

Schaeffer SM, Nakata PA. CRISPR/Cas9-mediated genome editing and gene replacement in plants: transitioning from lab to field. Plant Sci, 2015, 240: 130-142.

[110]

Schiml S, Fauser F, Puchta H. The CRISPR/Cas system can be used as nuclease for in planta gene targeting and as paired nickases for directed mutagenesis in Arabidopsis resulting in heritable progeny. Plant J, 2014, 80: 1139-1150.

[111]

Schwank G, Koo BK, Sasselli V, Dekkers JF, Heo I, Demircan T, Sasaki N, Boymans S, Cuppen E, van der Ent CK, Nieuwenhuis EE, Beekman JM, Clevers H. Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell, 2013, 13: 653-658.

[112]

Scott JN, Kupinski AP, Boyes J. Targeted genome regulation and modification using transcription activator-like effectors. FEBS J, 2014, 281: 4583-4597.

[113]

Shan Q, Wang Y, Li J, Gao C. Genome editing in rice and wheat using the CRISPR/Cas system. Nat Protoc, 2014, 9: 2395-2410.

[114]

Shan Q, Zhang Y, Chen K, Zhang K, Gao C. Creation of fragrant rice by targeted knockout of the OsBADH2 gene using TALEN technology. Plant Biotechnol J, 2015, 13: 791-800.

[115]

Sprink T, Metje J, Hartung F. Plant genome editing by novel tools: TALEN and other sequence specific nucleases. Curr Opin Biotechnol, 2015, 32: 47-53.

[116]

Steentoft C, Bennett EP, Schjoldager KT, Vakhrushev SY, Wandall HH, Clausen H. Precision genome editing: a small revolution for glycobiology. Glycobiology, 2014, 24: 663-680.

[117]

Steinert J, Schiml S, Fauser F, Puchta H. Highly efficient heritable plant genome engineering using Cas9 orthologues from Streptococcus thermophilus and Staphylococcus aureus. Plant J, 2015, 84: 1295-1305.

[118]

Sternberg SH, Redding S, Jinek M, Greene EC, Doudna JA. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature, 2014, 507: 62-67.

[119]

Sugano SS, Shirakawa M, Takagi J, Matsuda Y, Shimada T, Hara-Nishimura I, Kohchi T. CRISPR/Cas9-mediated targeted mutagenesis in the liverwort Marchantia polymorpha L. Plant Cell Physiol, 2014, 55: 475-481.

[120]

Sun X, Hu Z, Chen R, Jiang Q, Song G, Zhang H, Xi Y. Targeted mutagenesis in soybean using the CRISPR–Cas9 system. Sci Rep, 2015, 5: 10342.

[121]

Sun Y, Zhang X, Wu C, He Y, Ma Y, Hou H, Guo X, Du W, Zhao Y, Xia L. Engineering herbicide resistant rice plants through CRISPR/Cas9-mediated homologous recombination of the acetolactate synthase. Mol Plant, 2016, 9: 628.

[122]

Svitashev S, Young JK, Schwartz C, Gao H, Falco SC, Cigan AM. Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA. Plant Physiol, 2015, 169: 931-945.

[123]

Tang F, Yang S, Liu J, Zhu H. Rj4, a gene controlling nodulation specificity in soybeans, encodes a thaumatin-like protein but not the one previously reported. Plant Physiol, 2016, 170: 26-32.

[124]

Tingting L, Di F, Lingyu R, Yuanzhong J, Rui L, Keming L. Highly efficient CRISPR/Cas9-mediated targeted mutagenesis of multiple genes in Populus. Yi Chuan, 2015, 37: 1044-1052.

[125]

Tovkach A, Zeevi V, Tzfira T. A toolbox and procedural notes for characterizing novel zinc finger nucleases for genome editing in plant cells. Plant J, 2009, 57: 747-757.

[126]

Tsai CJ, Xue LJ. CRISPRing into the woods. GM Crops Food, 2015, 6: 1-10.

[127]

Tzfira T, Weinthal D, Marton I, Zeevi V, Zuker A, Vainstein A. Genome modifications in plant cells by custom-made restriction enzymes. Plant Biotechnol J, 2012, 10: 373-389.

[128]

Ul Ain Q, Chung JY, Kim YH. Current and future delivery systems for engineered nucleases: ZFN, TALEN and RGEN. J Control Release, 2015, 205: 120-127.

[129]

Unseld M, Marienfeld JR, Brandt P, Brennicke A. The mitochondrial genome of Arabidopsis thaliana contains 57 genes in 366,924 nucleotides. Nat Genet, 1997, 15: 57-61.

[130]

Upadhyay SK, Kumar J, Alok A, Tuli R. RNA-guided genome editing for target gene mutations in wheat. G3 (Bethesda), 2013, 3: 2233-2238.

[131]

Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD. Genome editing with engineered zinc finger nucleases. Nat Rev Genet, 2010, 11: 636-646.

[132]

Vaitilingom M, Stupar M, Grienenberger JM, Gualberto JM. A gene coding for an RPS2 protein is present in the mitochondrial genome of several cereals, but not in dicotyledons. Mol Gen Genet, 1998, 258: 530-537.

[133]

van Tol N, van der Zaal BJ. Artificial transcription factor-mediated regulation of gene expression. Plant Sci, 2014, 225: 58-67.

[134]

Vazquez-Vilar M, Bernabe-Orts JM, Fernandez-Del-Carmen A, Ziarsolo P, Blanca J, Granell A, Orzaez D. A modular toolbox for gRNA-Cas9 genome engineering in plants based on the GoldenBraid standard. Plant Methods, 2016, 12: 10.

[135]

Waaijers S, Portegijs V, Kerver J, Lemmens BB, Tijsterman M, van den Heuvel S, Boxem M. CRISPR/Cas9-targeted mutagenesis in Caenorhabditis elegans. Genetics, 2013, 195: 1187-1191.

[136]

Wang M, Liu Y, Zhang C, Liu J, Liu X, Wang L, Wang W, Chen H, Wei C, Ye X, Li X, Tu J. Gene editing by co-transformation of TALEN and chimeric RNA/DNA oligonucleotides on the rice OsEPSPS gene and the inheritance of mutations. PLoS ONE, 2015, 10: e0122755.

[137]

Weeks DP, Spalding MH, Yang B. Use of designer nucleases for targeted gene and genome editing in plants. Plant Biotechnol J, 2016, 14: 483-495.

[138]

Weinthal D, Tovkach A, Zeevi V, Tzfira T. Genome editing in plant cells by zinc finger nucleases. Trends Plant Sci, 2010, 15: 308-321.

[139]

Wood AJ, Lo TW, Zeitler B, Pickle CS, Ralston EJ, Lee AH, Amora R, Miller JC, Leung E, Meng X, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Meyer BJ. Targeted genome editing across species using ZFNs and TALENs. Science, 2011, 333: 307.

[140]

Wright DA, Li T, Yang B, Spalding MH. TALEN-mediated genome editing: prospects and perspectives. Biochem J, 2014, 462: 15-24.

[141]

Xie K, Yang Y. RNA-guided genome editing in plants using a CRISPR–Cas system. Mol Plant, 2013, 6: 1975-1983.

[142]

Xie K, Minkenberg B, Yang Y. Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system. Proc Natl Acad Sci USA, 2015, 112: 3570-3575.

[143]

Xing HL, Dong L, Wang ZP, Zhang HY, Han CY, Liu B, Wang XC, Chen QJ. A CRISPR/Cas9 toolkit for multiplex genome editing in plants. BMC Plant Biol, 2014, 14: 327.

[144]

Xu R, Zhang S, Huang J, Zheng C. Genome-wide comparative in silico analysis of the RNA helicase gene family in Zea mays and Glycine max: a comparison with Arabidopsis and Oryza sativa. PLoS ONE, 2013, 8: e78982.

[145]

Xu RF, Li H, Qin RY, Li J, Qiu CH, Yang YC, Ma H, Li L, Wei PC, Yang JB. Generation of inheritable and “transgene clean” targeted genome-modified rice in later generations using the CRISPR/Cas9 system. Sci Rep, 2015, 5: 11491.

[146]

Yan W, Smith C, Cheng L. Expanded activity of dimer nucleases by combining ZFN and TALEN for genome editing. Sci Rep, 2013, 3: 2376.

[147]

Zhang H, Zhang J, Wei P, Zhang B, Gou F, Feng Z, Mao Y, Yang L, Zhang H, Xu N, Zhu JK. The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnol J, 2014, 12: 797-807.

[148]

Zhang B, Sun Q, Li H. Advances in genetic modification technologies. Sheng Wu Gong Cheng Xue Bao, 2015, 31: 1162-1174.

[149]

Zhang G, Lin Y, Qi X, Li L, Wang Q, Ma Y. TALENs-assisted multiplex editing for accelerated genome evolution to improve yeast phenotypes. ACS Synth Biol, 2015, 4: 1101-1111.

[150]

Zhang Z, Mao Y, Ha S, Liu W, Botella JR, Zhu JK. A multiplex CRISPR/Cas9 platform for fast and efficient editing of multiple genes in Arabidopsis. Plant Cell Rep, 2015, 35: 1519.

[151]

Zhang B, Yang X, Yang C, Li M, Guo Y. Exploiting the CRISPR/Cas9 system for targeted genome mutagenesis in Petunia. Sci Rep, 2016, 6: 20315.

[152]

Zhang H, Gou F, Zhang J, Liu W, Li Q, Mao Y, Botella JR, Zhu JK. TALEN-mediated targeted mutagenesis produces a large variety of heritable mutations in rice. Plant Biotechnol J, 2016, 14: 186-194.

[153]

Zheng Z, Bao M, Wu F, Chen J, Deng X. Predominance of single prophage carrying a CRISPR/cas system in “Candidatus Liberibacter asiaticus” strains in Southern China. PLoS ONE, 2016, 11: e0146422.

[154]

Zhou J, Peng Z, Long J, Sosso D, Liu B, Eom JS, Huang S, Liu S, Vera Cruz C, Frommer WB, White FF, Yang B. Gene targeting by the TAL effector PthXo2 reveals cryptic resistance gene for bacterial blight of rice. Plant J, 2015, 82: 632-643.

[155]

Zlotorynski E. Plant cell biology: CRISPR–Cas protection from plant viruses. Nat Rev Mol Cell Biol, 2015, 16: 642.

AI Summary AI Mindmap
PDF

134

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/