Free amino acid content in trunk, branches and branchlets of Araucaria angustifolia (Araucariaceae)

Crizane Hackbarth , Patrícia Soffiatti , Flávio Zanette , Eny Iochevet Segal Floh , Amanda Ferreira Macedo , Henrique Aparecido Laureano

Journal of Forestry Research ›› 2017, Vol. 29 ›› Issue (6) : 1489 -1496.

PDF
Journal of Forestry Research ›› 2017, Vol. 29 ›› Issue (6) : 1489 -1496. DOI: 10.1007/s11676-017-0581-6
Original Paper

Free amino acid content in trunk, branches and branchlets of Araucaria angustifolia (Araucariaceae)

Author information +
History +
PDF

Abstract

Araucaria angustifolia (Bertol.) O. Kuntze exhibits dimorphism in its stem structure, where the trunk is orthotropic and branches and branchlets (primary and secondary branches) are plagiotropic. These stems exhibit different behavior when used for vegetative propagation, and only segments of trunk can form a complete plant. The physiological and biochemical mechanisms that characterize these stems are still little known. The aim of this study was to describe the free amino acid profiles in trunks, branches, and branchlets of A. angustifolia. Segments of 5 cm in length were excised from young individuals below the stem apex. The needles were removed and samples were frozen and lyophilized. The determinations were made by high-performance liquid chromatography, and the results were expressed as µg/g fresh weight (FW). The trunks and branches had the highest content of total amino acids, which were 112.23 ± 20.57 µg/g FW and 111.97 ± 27.78 µg/g FW, respectively. The amino acids—glutamine, aspartate and γ-aminobutyric acid and tyrosine—were noticeably higher in the three types of stems. In the trunk, a higher amount of asparagine and tryptophan, was also detected. Glutamic acid and glutamine were found in higher quantities in the branches. The branchlets had very low total amino acid content (30.79 ± 4.19 µg/g FW), wherein asparagine is the only amino acid not detected. Thus, it was observed that the profile of the free amino acid differs among trunks, branches, and branchlets in A. angustifolia, indicating that they perform different functions.

Keywords

Brazilian pine / Physiological mechanisms / Stem’s dimorphism / Free amino acids

Cite this article

Download citation ▾
Crizane Hackbarth, Patrícia Soffiatti, Flávio Zanette, Eny Iochevet Segal Floh, Amanda Ferreira Macedo, Henrique Aparecido Laureano. Free amino acid content in trunk, branches and branchlets of Araucaria angustifolia (Araucariaceae). Journal of Forestry Research, 2017, 29(6): 1489-1496 DOI:10.1007/s11676-017-0581-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Assumpção Neto A (2008) Plastocromo e filocromo aparente anual em Araucaria angustifolia (Bert.) O. Ktze, no município de Colombo-PR. Dissertation (Mestrado em Agronomia)—Programa de Pós-Graduação em Agronomia, Federal University of Paraná. 55f

[2]

Astarita LV, Floh EIS, Handro W. Changes in IAA, tryptophan and activity of soluble peroxidase associated with zygotic embryogenesis in Araucaria angustifolia (Brazilian pine). Plant Growth Regul, 2003, 39(2): 113-118.

[3]

Astarita LV, Floh EIS, Handro W. Free amino acid, protein and water content changes associate with seed development in Araucaria angustifolia. Biol Plant, 2003, 47(1): 53-59.

[4]

Azevedo RA, Lancien M, Lea PJ. The aspartic acid methabolic pathway, an exciting and essential pathway in plants. Amino Acids, 2006, 30: 143-162.

[5]

Caidan R, Cairang L, Liu B, Suo YR. Amino acid, fatty acid, and mineral compositions of fruit, stem, leaf and root of Rubus amabilis from the Qinghai-Tibetan Plateau. J Food Compos Anal, 2014, 33: 26-31.

[6]

Cánovas FM, Avila C, Cantón FR, Cañas RA, de la Torre F. Ammonium assimilation and amino acid metabolism in conifers. J Exp Bot, 2007, 58(9): 2307-2318.

[7]

Carvalho A, Krug CA, Mendes JET. O dimorfismo dos ramos em Coffea arabica L. Bragantia, 1950, 10(6): 151-159.

[8]

Constantino V (2017) Nutrição de mudas e morfogênese na enxertia de Araucaria angustifolia (Bert.) O. Kuntze. Thesis, Federal University of Paraná

[9]

Coruzzi G, Last R. Buchanan BB, Gruissem W, Jones RL. Amino acids. Biochemistry and molecular biology of plants, 2000, Rockville: American Society of Plant Physiologists 358 410

[10]

Durzan DJ. Nitrogen metabolism of Piceae gluaca I. Seasonal changes of free amino acids in buds, shoot apices, and leaves, and the metabolism of uniformly labeled 14C-l-Arginine by buds during the onset of dormancy. Can J Bot, 1967, 46: 909-919.

[11]

Elbl P, Lira BS, Andrade SCS, Jo L, Santos ALWD, Coutinho LL, Floh EIS, Rossi M. Comparative transcriptome analysis of early somatic embryo formation and seed development in Brazilian pine: Araucaria angustifolia (Bert.) Kuntze. Plant Cell, Tissue Organ Cult, 2014, 120: 903-915.

[12]

Fagard M, Launay A, Clement G, Courtial J, Dellagi A, Farjad M, Krapp A, Soulié MC, Masclaux-Daubresse C. Nitrogen metabolism meets phytopathology. J Exp Bot, 2014, 65: 5643-5656.

[13]

Fait A, Fromm H, Walter D, Galili G, Fernie AR. Highway or byway: the metabolic role of the GABA shunt in plants. Trends Plant Sci, 2008, 13: 14-19.

[14]

Flores-Rentería L, Molina-Freaner F, Whipple AV, Gehring CA, Domínguez CA. Sexual stability in the nearly dioecious Pinus johannis (Pinaceae). Am J Bot, 2013, 100(3): 602-612.

[15]

Galili G, Avin-Wittenberg T, Angelovici R, Fernie AR. The role of photosynthesis and amino acid metabolism in the energy status during seed development. Front Plant Sci, 2014, 5: 447.

[16]

Gallardo F, Fu JM, Jing ZP, Kirby EG, Caovas FM. Genetic modification of amino acid metabolism in woody plants. Plant Physiol Biochem, 2003, 41: 587-594.

[17]

Gu LP, Jones AD, Last RL. Broad connections in the Arabidopsis seed metabolic network 322 revealed by metabolite profiling of an amino acid catabolism mutant. Plant J, 2010, 61: 579-590.

[18]

Haines RJ, Fossard RA. Propagation of hoop pine (Araucaria cunninghamii AIT.). Acta Hort, 1977, 78: 297-300.

[19]

Hasan HMI, El-Mehdawy MF, Saad EK. Amino acid contents of leaves and stems for three types of herbal plants at Al-Gabal Al-Akhder Region. World J Chem, 2014, 9(1): 15-19.

[20]

Häusler RE, Ludewig F, Krueger S. Amino acids—a life between metabolism and signaling. Plant Sci, 2014, 229: 225-237.

[21]

Hildebrandt TM, Nesi AN, Araújo WL, Braun HP. Amino acid catabolism in plants. Mol Plant, 2015, 8(11): 1563-1579.

[22]

Iritani C, Zanette F, Cislinski J. Aspectos anatômicos da cultura in vitro da Araucaria angustifolia. I. Organização e desenvolvimento dos meristemas axilares ortotrópicos de segmentos caulinares. Acta Biol Parana, 1992, 21(1–4): 57-76.

[23]

Kageyama PY, Ferreira M. Propagação vegetativa por enxertia Araucaria angustifolia (Bert) O. Ktze. Instituto de Pesquisas de Estudos Florestais, 1975, 12: 95-102.

[24]

Kim YT, Glerum C. Seasonal free amino acids fluctuations in red pine and white spruce needles. Can J For Rea, 1995, 25: 697-703.

[25]

Kinnersley AM, Lin F. Receptor modifiers indicate that 4-aminobutyric acid (GABA) is a potential modulator of ion transport in plants. Plant Growth Regul, 2000, 32: 65-76.

[26]

Krübel L, Junemann J, Wirtz M, Birke H, Thornton JD, Browning LW, Poschet G, Hell R, Balk J, Braun HP, Hildebrandt TM. The mitochondrial sulfur dioxygenase ETHYLMALONIC ENCEPHALOPATHY PROTEIN1 is required for amino acid catabolism during carbohydrate starvation and embryo development in Arabidopsis. Plant Physiol, 2014, 165: 92-104.

[27]

Lam HM, Coschigano K, Schultz C, Melo-Oliveira R, Tjaden G, Oliveira I, Ngai N, Hsieh MH, Coruzzi G. Use of Arabidopsis mutants and genes to study amino acid biosynthesis. Plant Cell, 1995, 7: 887-898.

[28]

Lamote CE, Pickard BG. Control of gravitropic orientation. II Dual receptor model for gravitropism. Funct Plant Biol, 2004, 31: 109-120.

[29]

Lea PJ, Sodek L, Parry MAJ, ShewryPR HalfordNG. Asparagine in plants. Ann Appl Biol, 2006, 150(1): 1-26.

[30]

Mano Y, Nemoto K. The pathway of auxin biosynthesis in plants. J Exp Bot, 2012, 63(8): 2853-2872.

[31]

McSteen P, Leyser O. Shoot branching. Annu Rev Plant Biol, 2005, 56: 353-374.

[32]

Moyle RL, Schrader J, Stenberg A, Olsson O, Saxena S, Sandberg G, Bhalerao RP. Environmental and auxin regulation of wood formation involves members of the Aux/IAA gene family in hybrid Aspen. Plant J, 2002, 31: 675-685.

[33]

Muday GK. Auxins and tropisms. J Plant Growth Regul, 2001, 20(3): 226-243.

[34]

Noctor G, Novitskaya L, Lea PJ, Foyer CH. Co-ordination of leaf minor acid contentes in crop species: significance and interpretation. J Exp Bot, 2002, 53(370): 939-945.

[35]

Oliveira LS (2011) Enxertia, microenxertia e descrição do tropismo em Araucaria angustifolia (Bert.) O. Kuntz. Thesis, Federal University of Paraná

[36]

Oliveira IC, Brenner E, Chiu J, Hsieh MH, Kouranov A, Lam HM, Shin MJ, Coruzzi G. Metabolite and light regulation of metabolism in plants: lessons from the study of a single biochemical pathway. Braz J Med Biol Res, 2001, 34: 567-575.

[37]

Oliveira IP, Oliveira LC, Moura CSFT. Cultura do café: histórico, classificação e fases de crescimento. Revista Faculdade Montes Belos, 2010, 5(3): 17-32.

[38]

Pereira GP, Zanette F, Biasi LA, de Carvalho RIN. Atividade respiratória de meristemas apicais de ramos plagiotrópicos de Araucaria angustifolia (Bert.) O. Kuntze. Ciência Florestal, 2016, 26(1): 203-211.

[39]

Rodriguez C, Frias J, Vidal-Valverde C. Correlation between some fractions, lysine, histidine, tyrosine and ornithine contents during the germination of peas, beans and lentils. Food Chem, 2008, 108: 245-252.

[40]

Steiner N, Santa-Catarina C, Andrade JBR, Balbuena TS, Guerra MP, Handro W, Floh EIS, Silveira V. Araucaria angustifolia biotechnology. Funct Plant Sci Biotechnol, 2008, 2: 20-28.

[41]

Van Heerden PS, Towers GH, Lewis NG. Nitrogen metabolism in lignifying Pinus taeda cell cultures. J Biol Chem, 1996, 271: 12350-12355.

[42]

Veierskov B, Rasmussen HN, Eriksen B, Hansen-Møller J. Plagiotropism and auxin in Abies nordmanianna. Tree Physiol, 2006, 27(1): 149-153.

[43]

Wendling I. Enxertia e florescimento precoce em Araucaria angustifolia, 2011, Colombo: Embrapa Florestas.

[44]

Wu GY, Meininger CJ. Analysis of citrulline, arginine, and methylarginines using high-performance liquid chromatography. Methods Enzymol, 2008, 440: 177-189.

[45]

Zanette F, Oliveira LS, Biasi LA. Grafting of Araucaria angustifolia (Bertol.) Kuntze through the four seasons of the year. Revista Brasileira de Fruticultura, 2011, 33(4): 1364-1370.

[46]

Zanette F, Danner MA, Constantino V, Wendling I. Wendling I, Zanette F. Particularidades e biologia reprodutiva de Araucaria angustifolia. Araucária: particularidades, propagação e manejo de plantios, 2017, Brasília: Embrapa 15 39

[47]

Zeier J. New insights into the regulation of plant immunity by amino acid metabolic pathways. Plant, Cell Environ, 2013, 36: 2085-2103.

AI Summary AI Mindmap
PDF

142

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/