Carbon sequestration capability of Fagus sylvatica forests developing in the Majella National Park (Central Apennines, Italy)

Loretta Gratani , Luciano Di Martino , Anna Rita Frattaroli , Andrea Bonito , Valter Di Cecco , Walter De Simone , Giorgia Ferella , Rosangela Catoni

Journal of Forestry Research ›› 2018, Vol. 29 ›› Issue (6) : 1627 -1634.

PDF
Journal of Forestry Research ›› 2018, Vol. 29 ›› Issue (6) : 1627 -1634. DOI: 10.1007/s11676-017-0575-4
Original Paper

Carbon sequestration capability of Fagus sylvatica forests developing in the Majella National Park (Central Apennines, Italy)

Author information +
History +
PDF

Abstract

Terrestrial ecosystems represent a major sink for atmospheric carbon (C) and temperate forests play an important role in global C cycling, contributing to lower atmospheric carbon dioxide (CO2) concentration through photosynthesis. The Intergovernmental Panel of Climate Change highlights that the forestry sector has great potential to decrease atmospheric CO2 concentration compared to other sectoral mitigation activities. The aim of this study was to evaluate CO2 sequestration (CO2S) capability of Fagus sylvatica (beech) growing in the Orfento Valley within Majella National Park (Abruzzo, Italy). We compared F. sylvatica areas subjected to thinning (one high-forest and one coppice) and no-management areas (two high-forests and two coppices). The results show a mean CO2S of 44.3 ± 2.6 Mg CO2 ha−1 a−1, corresponding to 12.1 ± 0.7 Mg C ha−1 a−1 the no-managed areas having a 28% higher value than the managed areas. The results highlight that thinning that allows seed regeneration can support traditional management practices such as civic use in some areas while no management should be carried out in the reserve in order to give priority to the objective of conservation and naturalistic improvement of the forest heritage.

Keywords

Beech / Carbon sequestration / Coppice / High-forest / Leaf area index

Cite this article

Download citation ▾
Loretta Gratani, Luciano Di Martino, Anna Rita Frattaroli, Andrea Bonito, Valter Di Cecco, Walter De Simone, Giorgia Ferella, Rosangela Catoni. Carbon sequestration capability of Fagus sylvatica forests developing in the Majella National Park (Central Apennines, Italy). Journal of Forestry Research, 2018, 29(6): 1627-1634 DOI:10.1007/s11676-017-0575-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aranda I, Gil L, Pardos JA. Water relations and gas exchange in Fagus sylvatica L. and Quercus petraea (Mattuschka) Liebl. in a mixed stand at their southern limit of distribution in Europe. Trees, 2000, 14: 344-352.

[2]

Aussenac G. Interactions between forest stands and microclimate: ecophysiological aspects and consequences for silviculture. Ann For Sci, 2000, 57: 287-301.

[3]

Baldocchi D. Measuring and modelling carbon dioxide and water vapour exchange over a temperate broad-leaved forest during the 1995 summer drought. Plant, Cell Environ, 1997, 20: 1108-1122.

[4]

Beaumont NJ, Jones L, Garbutt A, Hansom JD, Tobermann M. The value of carbon sequestration and storage in coastal habitats. Estuar Coast Shelf Sci, 2014, 137: 32-40.

[5]

Brunet J, Fritz Ö, Richnau G. Biodiversity in European beech forests—a review with recommendations for sustainable forest management. Ecol Bull, 2010, 53: 77-94.

[6]

Cole JJ, Prairie YT, Caraco NF, Mcdowell WH, Tranvik LJ, Striegl RG, Duarte CM, Kortelainen P, Downing JA, Middelburg JJ, Melack J. Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems, 2017, 10: 171-184.

[7]

Damesin C. Respiration and photosynthesis characteristics of current-year stems of Fagus sylvatica: from the seasonal pattern to an annual balance. New Phytol, 2003, 158: 465-475.

[8]

de Pury DGG, Farquhar GD. Simple scaling of photosynthesis from leaves to canopies without the errors of big-leaf models. Plant, Cell Environ, 1997, 20: 537-557.

[9]

de Simon G, Alberti G, Delle Vedove G, Zerbi G, Peressotti A. Carbon stocks and net ecosystem production changes with time in two Italian forest chronosequences. Eur J For Res, 2012, 131: 1297-1311.

[10]

Ellenberg H, Leuschner C. Vegetation Mitteleuropas mit den Alpen in ökologischer, dynamischer und historischer Sicht, 2014 6 Stuttgart: Ulmer Verlag 1333

[11]

Evrendilek F, Berberoglu B, Taskinsu-Meydan S, Yilmaz E. Quantifying carbon budget of conifer Mediterranean forest ecosystems, Turkey. Environ Monit Assess, 2006, 119: 527-543.

[12]

Feliziani R. Gafta D, Akeroyd J. Forest management in protected areas in Italy. Quantifying carbon budget of conifer Mediterranean forest ecosystems, Turkey. Nature conservation, 2006, Berlin: Springer 380 391

[13]

Fotelli MN, Rienks M, Rennenberg H, Geßler A. Climate and forest management affect 15 N-uptake, N balance and biomass of European beech seedlings. Trees, 2004, 18: 157-166.

[14]

Garrigues S, Shabanov NV, Swanson K, Morisette JT, Baret F, Myneni RB. Inter comparison and sensitivity analysis of Leaf Area Index retrievals from LAI-2000, AccuPAR, and digital hemispherical photography over croplands. Agric For Meteorol, 2008, 148: 1193-1209.

[15]

Gower ST, Norman JM. Rapid estimation of leaf area index in conifer and broad-leaf plantations. Ecology, 1991, 72(5): 1896-1900.

[16]

Granata MU, Gratani L, Bracco F, Sartori F, Catoni R. Carbon stock estimation in an unmanaged old-growth forest: a case study from a broad-leaf deciduous forest in the northwest of Italy. Int For Rev, 2016, 18(4): 444-451.

[17]

Gratani L, Varone L. Carbon sequestration by Quercus ilex L. and Quercus pubescens Willd. and their contribution to decreasing air temperature in Rome. Urban Ecosyst, 2006, 9: 27-37.

[18]

Gratani L, Varone L. Plant crown traits and carbon sequestration capability by Platanus hybrida Brot. in Rome. Lands Urban Plan, 2007, 81: 282-286.

[19]

Gratani L, Catoni R, Varone L. Quercus ilex L. carbon sequestration capability related to shrub size. Environ Monit Assess, 2011, 178(1/4): 383-392.

[20]

Gratani L, Varone L, Ricotta C, Catoni R. Mediterranean shrublands carbon sequestration: environmental and economic benefits. Mitig Adapt Strat Glob Change, 2013, 18(8): 1167-1182.

[21]

Gratani L, Bonito A, Crescente MF, Catoni R, Varone L, Tinelli A. The use of maps as a monitoring tool of protected areas management. Rend Lincei Sci Fis Nat, 2015, 26(3): 325-335.

[22]

Gutiérrez E. Dendroecological study of Fagus sylvatica L. in the Montseny mountains (Spain). Acta Oecol, 1988, 9: 301-309.

[23]

Hahn K, Fanta J (2001) Contemporary beech forest management in Europe. NAT-MAN Working Report 1

[24]

INFC (2005) Inventario Nazionale delle Foreste e dei Serbatoi Forestali di Carbonio. Ministero delle Politiche Agricole Alimentari e Forestali, Ispettorato Generale-Corpo Forestale dello Stato, CRA—Istituto Sperimentale per l’Assestamento Forestale e per l’Alpicoltura [online]. http://www.sian.it/inventarioforestale/jsp/home.jsp

[25]

Jahn G. Röhrig E, Ulrich B. Temperate deciduous forests of Europe. Ecosystems of the world. Temperate deciduous forests, 1991, Amsterdam: Elsevier 377 502

[26]

Jain A, Ansari SA. Quantification by allometric equations of carbon sequestered by Tectona grandis in different agroforestry systems. J For Res, 2013, 24(4): 699-702.

[27]

Jha KK. Carbon storage and sequestration rate assessment and allometric model development in young teak plantations of tropical moist deciduous forest India. J For Res, 2015, 26(3): 589-604.

[28]

Kimm H, Ryu Y. Seasonal variations in photosynthetic parameters and leaf area index in an urban park. Urban For Urban Green, 2015, 14: 1059-1067.

[29]

Leuning R, Kelliher FM, Depury DGG, Schulze ED. Leaf nitrogen, photosynthesis, conductance and transpiration–scaling from leaves to canopies. Plant, Cell Environ, 1995, 18: 1183-1200.

[30]

McGrath MJ, Luyssaert S, Meyfroidt P, Kaplan JO, Buergi M, Chen Y, Erb K, Gimmi U, McInerney D, Naudts K, Otto J, Pasztor F, Ryder J, Schelhaas MJ, Valade A. Reconstructing European forest management from 1600 to 2010. Biogeosci Discuss, 2015, 12: 5365-5433.

[31]

Muscolo A, Settineri G, Bagnato S, Mercurio R, Sidari M. Use of canopy gap openings to restore coniferous stands in Mediterranean environment. IForest, 2017, 10: 322-327.

[32]

Nakajima T, Kanomata H, Matsumoto M, Tatsuhara S, Shiraishi N. Cost-effectiveness analysis of subsidy schemes for industrial timber development and carbon sequestration in Japanese forest plantations. J For Res, 2011, 22(1): 1-12.

[33]

Nocentini S. Structure and management of beech (Fagus sylvatica L.) forests in Italy. iForest, 2009, 2: 105-113.

[34]

Oelbermann M, Voroney RP, Gordon AM. Carbon sequestration in tropical and temperate agroforestry systems: a review with examples from Costa Rica and southern Canada. Agric Ecosyst Environ, 2004, 104: 359-377.

[35]

Pan Y, Birdsey RA, Fang JR, Houghton P, Kauppi E, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P, Jackson RB, Pacala SW, Mcguire AD, Piao S, Rautiainen A, Sitch S, Hayes D. A large and persistent carbon sink in the world’s forests. Science, 2011, 333: 988-993.

[36]

Pant H, Tewari A. Carbon sequestration in Chir-Pine (Pinus roxburghii Sarg.) forests under various disturbance levels in Kumaun Central Himalaya. J For Res, 2014, 25(2): 401-405.

[37]

Piovesan G, Di Filippo A, Alessandrini A, Biondi F, Schirone B. Structure, dynamics and dendroecology of an old-growth Fagus forest in the Apennines. J Veg Sci, 2005, 16(1): 13-28.

[38]

Puettmann KJ, McG Wilson S, Baker SC, Donoso PJ, Drössler L, Amente G, Harvey BD, Knoke T, Lu YC, Nocentini S, Putz FE, Yoshida T, Bauhus J. Silvicultural alternatives to conventional even-aged forest management—what limits global adoption?. For Ecosyst, 2015, 2: 8.

[39]

Pukkala T. Multi-objective forest planning, 2002, Boston: Kluwer Academic 207

[40]

Ryu Y, Baldocchi DD, Kobayashi H, van Ingen C, Li J, Black TA, Beringer J, van Gorsel E, Knohl A, Law BE, Roupsard O. Integration of MODIS land and atmosphere products with a coupled-process model to estimate gross primary productivity and evapotranspiration from 1 km to global scales. Glob Biogeochem Cycles, 2011 25 4 GB4017

[41]

Scolastri A, Cancellieri L, Iocchi M, Cutini M. Old coppice versus high forest: the impact of beech forest management on plant species diversity in central Apennines (Italy). J Plant Ecol, 2017, 10(2): 271-280.

[42]

Simon J, Dannenmann M, Pena R, Gessler A, Rennenberg H. Nitrogen nutrition of beech forests in a changing climate: importance of plant-soil-microbe water, carbon, and nitrogen interactions. Plant Soil, 2017

[43]

Takimoto A, Ramachandran Nair PK, Nair VD. Carbon stock and sequestration potential of traditional and improved agroforestry systems in the West African Sahel. Agric Ecosyst Environ, 2008, 125: 159-166.

[44]

Thiébaut B. Modification du climat sur la limite du domaine méditerranéen. Les climats dans la région méditerranéen française et leur influence sur la végétation: le cas du hêtre. Bull Soc Bot France, 1984, 131: 191-203.

[45]

UNFCCC (1997) Kyoto protocol to the United Nation Framework Convention on climate change. http://unfccc.int/

[46]

Van der Maaten E. Thinning prolongs growth duration of European beech (Fagus sylvatica L.) across a valley in southwestern Germany. For Ecol Manag, 2013, 306: 135-141.

[47]

Varone L, Vitale M, Catoni R, Gratani L. Physiological differences of five Holm oak (Quercus ilex L.) ecotypes growing under common growth conditions were related to native local climate. Plant Species Biol, 2015, 31(3): 196-210.

[48]

Wu SN, Li JQ, Zhou WM, Lewis BJ, Yu DP, Zhou L, Jiang LH, Dai LM. A statistical analysis of spatiotemporal variations and determinant factors of forest carbon storage under China’s Natural Forest Protection Program. J For Res, 2017

AI Summary AI Mindmap
PDF

209

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/