DNA polymorphisms and genetic relationship among populations of Acacia leucophloea using RAPD markers

V. N. Mutharaian , R. Kamalakannan , A. Mayavel , S. Makesh , S. H. Kwon , K.-S. Kang

Journal of Forestry Research ›› 2017, Vol. 29 ›› Issue (4) : 1013 -1020.

PDF
Journal of Forestry Research ›› 2017, Vol. 29 ›› Issue (4) : 1013 -1020. DOI: 10.1007/s11676-017-0574-5
Original Paper

DNA polymorphisms and genetic relationship among populations of Acacia leucophloea using RAPD markers

Author information +
History +
PDF

Abstract

RAPD (randomly amplified polymorphic DNA) markers were employed to characterize polymorphisms among 5 provenances of Acacia leucophloea and to detect genetic relatedness of the species with 6 other acacias (A. holosericea, A. auriculiformis, A. mangium, A. dealbata, A. ferruginea, and A. nilotica) widely grown in India. Of 194 markers scored for the provenances, 29.38% exhibited polymorphism. Also, 326 markers were generated among 7 species of Acacia, accounting for 55.82% of the polymorphisms. The fifteen 10-mer primers employed were capable of producing 1–8 polymorphic bands for the provenances, and 6–17 for all seven species of Acacia. The genetic similarity coefficient based on Jaccard’s coefficient revealed that provenances Thirumangalam and Dharmapuri were closely related. The dendrogram based on a sequential agglomerative hierarchical non-overlapping (SAHN) clustering analysis grouped 4 provenances of A. leucophloea (Dharapuram, Thirumangalam, Pudukottai and Dharmapuri) into one cluster and the other provenance, Sendurai, into a separate cluster. The genetic similarity matrix for 7 Acacia species showed that A. nilotica and A. dealbata were distantly related, while A. holosericea and A. ferruginea were very closely related. Cluster analysis grouped the species of Acacias into 3 major groups of which A. dealbata alone formed a separate group. The RAPD markers generated 36 provenance-specific markers and 162 species-specific markers that could have strong applications for species identification and tree breeding programs for A. leucophloea and for other Acacia species included in this study.

Keywords

Acacia leucophloea / Provenances / Acacia sp. / Genetic relatedness / RAPD markers

Cite this article

Download citation ▾
V. N. Mutharaian, R. Kamalakannan, A. Mayavel, S. Makesh, S. H. Kwon, K.-S. Kang. DNA polymorphisms and genetic relationship among populations of Acacia leucophloea using RAPD markers. Journal of Forestry Research, 2017, 29(4): 1013-1020 DOI:10.1007/s11676-017-0574-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Allen ON, Allen EK. The Leguminosae: a source book of characteristics, uses and nodulation, 1981, Madison: The University of Wisconsin Press

[2]

Brenan JPM. Manual on taxonomy of Acacia species: present taxonomy of four species of Acacia (A. albida, A. senegal, A. nilotica, A. tortilis), 1983, Rome: FAO 20 24

[3]

Bukhari YM, Koivu K, Tigerstedt P. Phylogenetic analysis of Acacia (Mimosaceae) as revealed from chloroplast RFLP data. Theor Appl Genet, 1999, 98: 291-298.

[4]

Darnell JE, Baltimore D, Lodish HF. Molecular cell biology, 1990 2 New York: Scientific American Books.

[5]

Fagg CW, Stewart JL. The value of Acacia and Prosopis in arid and semiarid environments. J Arid Environ, 1994, 27: 3-25.

[6]

Ganesh Ram S, Parthiban KT, Senthil Kumar R, Thiruvengadam V, Paramathma M. Genetic diversity among Jatropha species as revealed by RAPD markers. Genet Resour Crop Evol, 2008, 55: 803-809.

[7]

George N, Byrne M, Maslin B, Yan G. Genetic differentiation among morphological variants of Acacia saligna (Mimosaceae). Tree Genet Genomes, 2006, 2: 109-119.

[8]

Harrier LA, Whitty PW, Sutherland JM, Sprent JI. Phenetic investigation of non-nodulating African species of Acacia (Leguminosae) using morphological and molecular markers. Plant Syst Evol, 1997, 205: 27-51.

[9]

Huchett BI, Botha FC. Stability and potential use of RAPD markers in a sugarcane genealogy. Euphytica, 1995, 86: 117-125.

[10]

Kremer A, Caron H, Cavers S, Colpaert N, Gheysen G, Gribel R, Lemes M, Lowe AJ, Margis R, Navarro C, Salgueiro F. Monitoring genetic diversity in tropical trees with multilocus dominant markers. Heredity, 2005, 95: 274-280.

[11]

Landeras G, Alfonso M, Pasiecznik NM, Harris PJC, Ramirez L. Identification of Prosopis juliflora and Prosopis pallida accessions using molecular markers. Biodivers Conserv, 2006, 15: 1829-1844.

[12]

Mandal AK, Ennos AK. Mating system analysis in a natural population of Acacia nilotica subsp Kraussiana. For Ecol Manag, 1995, 79: 235-240.

[13]

Moffett AA. Genetical studies in Acacias. I. The estimation of natural crossing in black wattle. Heredity, 1956, 10: 57-67.

[14]

Moran GF, Muona O, Bell JC. The breeding systems and genetic diversity in the tropical Acacias, Acacia auriculiformis and A. crassicarpa. Biotropica, 1989, 21: 250-256.

[15]

Nanda RM, Nayak S, Rout GR. Studies on genetic relatedness of Acacia tree species using RAPD markers. Biol Bratisl, 2004, 59: 115-120.

[16]

Nguyen NT, Moghaieb REA, Saneoka H, Fujita K. RAPD markers associated with salt tolerance in Acacia auriculiformis and Acacia mangium. Plant Sci, 2004, 16: 797-805.

[17]

Nkongolo KK, Michael P, Gratton WS. Identification and characterization of RAPD markers inferring genetic relationships among pine species. Genome, 2002, 45: 51-58.

[18]

O’Brien EK, Mazanec RA, Krauss SL. Provenance variation of ecologically important traits of forest trees: implications for restoration. J Appl Ecol, 2007, 44: 583-593.

[19]

Omondi SF, Kireger E, Dangasuk OG, Chikamai B, Odee DW, Cavers S, Khasa DP. Genetic diversity and population structure of Acacia senegal (L) Willd. in Kenya. Trop Plant Biol, 2010, 3: 59-70.

[20]

Parotta JA. Healing plants of peninsular India, 2001, Oxford: CABI Publishing

[21]

Philp J, Sherry SP. The degree of natural crossing in green wattle (A. decurrens Willd) and its bearing on wattle breeding. J S Afr For Assoc, 1946, 14: 1-28.

[22]

Ranade SA, Farooqui N. Assessment of profile variations amongst provenances of neem using single-primer-amplification reaction (SPAR) techniques. Mol Biol Today, 2002, 3: 1-10.

[23]

Rohlf FJ. NTSYSpc: numerical taxonomy and multivariate analysis system, version 2.02, 1997, Setauket: Exeter Software.

[24]

Rutishauser R, Sattler R. Architecture and development of the phyllode–stipule whorls of Acacia longipedunculata: controversial interpretations and continuum approach. Can J Bot, 1986, 64: 1987-2019.

[25]

Shrestha MK, Golan-Goldhirsh A, Ward D. Population genetic structure and the conservation of isolated populations of Acacia raddiana in the Negev desert. Biol Conserv, 2002, 108: 119-127.

[26]

Sneath PHA, Sokal RR. Numerical taxonomy. The principles and practice of numerical classification, 1973, San Francisco: W H Freeman & Co 573

[27]

Tandon R, Shivanna KR. Pollination biology and breeding system of Acacia senegal. Bot J Linn Soc, 2001, 135: 251-262.

[28]

Williams JGK, Kubelik AR, Livak KJ, Rafalaski JA, Tingey SV. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res, 1990, 18: 6531-6535.

AI Summary AI Mindmap
PDF

133

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/