Deposition of litter and nutrients in leaves and twigs in different plant communities of northeastern Mexico

Humberto González-Rodríguez , Roque Gonzalo Ramírez-Lozano , Israel Cantú-Silva , Marco Vinicio Gómez-Meza , Eduardo Estrada-Castillón , José Ramón Arévalo

Journal of Forestry Research ›› 2017, Vol. 29 ›› Issue (5) : 1307 -1314.

PDF
Journal of Forestry Research ›› 2017, Vol. 29 ›› Issue (5) : 1307 -1314. DOI: 10.1007/s11676-017-0553-x
Original Paper

Deposition of litter and nutrients in leaves and twigs in different plant communities of northeastern Mexico

Author information +
History +
PDF

Abstract

Studies on litterfall and decomposition provide estimations of decomposition rates of different ecosystems. This is key information to understanding ecosystem dynamics and changes in a scenario of global warming. The objective of this research was to assess litterfall production, the potential deposition of macro and micronutrients through leaf and twig fall as well as macronutrient—use efficiency in three forest ecosystems at different altitudes: a pine forest mixed with deciduous species (S1); a Quercus spp. forest (S2); and, a Tamaulipan thornscrub forest (S3). Total annual litterfall deposition was 594,742 and 533 g m−2 for S1, S2 and S3. Leaf litter was higher (68%) than twigs (18%), reproductive structures (8%) or miscellaneous material (6%). Micronutrient leaf deposition was higher for Fe followed by Mn, Zn and Cu. Macronutrient leaf deposition was higher for Ca followed by K, Mg and P. Even though P deposition in leaves and twigs was lower than other macronutrients, its nutrient use efficiency was higher than Ca, Mg or K. Altitude and species composition determine litter and nutrient deposition, with higher values at mid-altitudes (550 m). Altitude is an important factor to consider when analyzing litter production as well as nutrient deposition as shown in this study. Litter production and nutrient deposition are expected to change in a scenario of global warming.

Keywords

Deciduous species / Litter deposition / Leaf/twig litter nutrients / Pine forest / Tamaulipan thornscrub

Cite this article

Download citation ▾
Humberto González-Rodríguez, Roque Gonzalo Ramírez-Lozano, Israel Cantú-Silva, Marco Vinicio Gómez-Meza, Eduardo Estrada-Castillón, José Ramón Arévalo. Deposition of litter and nutrients in leaves and twigs in different plant communities of northeastern Mexico. Journal of Forestry Research, 2017, 29(5): 1307-1314 DOI:10.1007/s11676-017-0553-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Allen MS, Thapa V, Arévalo JR, Palmer MW. Windstorm damage and forest recovery: accelerated succession, stand structure, and spatial pattern over 25 years in two Minnesota forests. Plant Ecol, 2012, 213: 1833-1842.

[2]

Anderson M, Gorley RN, Clarke RK. Permanova + for Primer: guide to software and statistical methods, 2008, Plymouth: Plymouth Marine Laboratory 214

[3]

Andivia E, Fernández M, Vázquez-Piqué J, González-Pérez A, Tapias R. Nutrient return from leaves and litterfall in a Mediterranean cork oak (Quercus suber L.) forest in southwestern Spain. Eur J For Res, 2012, 129: 5-12.

[4]

AOAC. Official methods of analysis, 1997 16 Washington: Association of Official Analytical Chemists, Washington 3172

[5]

Bates BC, Kundzewicz ZW, Wu S, Palutikof JP. Climate change and water. Technical paper of the intergovernmental panel on climate change, 2008, Geneva: IPCC Secretariat 210

[6]

Binkley D, Stape JL, Ryan MG. Thinking about efficiency of resource use in forests. For Ecol Manag, 2004, 193: 5-16.

[7]

Caritat A, García-Berthou E, Lapeña R, Vilar L. Litter production in a Quercus suber forest of Montseny (NE Spain) and its relationship to meteorological conditions. Ann For Sci, 2006, 63: 791-800.

[8]

Cherney DJR. Givens DI, Owen E, Axford RFE, Omed HM. Characterization of forages by chemical analysis. Forage evaluation in ruminant nutrition, 2000, Wallingford: CAB International 281 300

[9]

Christensen JH, Hewitson B, Busuioc A, Chen A, Gao X, Held I, Jones R, Kolli RK, Kwon WT, Laprise R, Magaña-Rueda V, Mearns L, Menéndez CG, Räisänen J, Rinke A, Sarr A, Whetton P. Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL. Regional climate projections. Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change, 2007, Cambridge: Cambridge University Press 996

[10]

Del Valle-Arango JI. Cantidad, calidad y nutrientes reciclados por la hojarasca fina en bosques pantanosos del pacífico sur colombiano. Interciencia, 2003, 28: 443-449.

[11]

Estrada E, Arévalo JR, Villareal JA, Salinas MM, Encinas-Domínguez JA, González H, Cantú CM. Classification and ordination of main plant assemblages along an altitudinal gradiente in the arid and temperate climates of northeastern Mexico. Sci Nat, 2015, 102: 59.

[12]

González-Rodríguez H, Cantú-Silva I, Gómez-Meza MV, Ramírez-Lozano RG. Plant water relations of thornscrub shrub species, northeastern Mexico. J Arid Environ, 2004, 58: 483-503.

[13]

González-Rodríguez H, Domínguez-Gómez TG, Cantú-Silva I, Gómez-Meza MV, Ramírez-Lozano RG, Pando-Moreno M, Fernández CJ. Litterfall deposition and leaf litter nutrient return in different locations at Northeastern Mexico. Plant Ecol, 2011, 212: 1747-1757.

[14]

González-Rodríguez H, Ramírez-Lozano RG, Cantú-Silva I, Gómez-Meza MV, Cotera-Correa M, Carrillo-Parra A, Marroquín-Castillo JJ. Litterfall production and nutrient returns through leaves in a microphyllous desert scrubland, northeastern Mexico. Rev Chapingo Serie Ciencias Forestales y delAmbiente, 2013, 19: 249-262.

[15]

Isaac SR, Nair MA. Litter dynamics of six multipurpose trees in a homegarden in Southern Kerala, India. Agrofor Syst, 2006, 67: 203-213.

[16]

Lambers H, Chapin FS III, Pons TL. Plant physiological ecology, 2000 2 New York: Springer 636

[17]

Lindroos AJ, Derome J, Derome K, Lindgren M. Trends in sulphate deposition on the forests and forest floor and defoliation degree in 16 intensively studied forest stands in Finland during 1996–2003. Boreal Env Res, 2006, 11: 451-461.

[18]

Lopes MCA, Aráujo VFP, Vasconcellos A. The effects of rainfall and vegetation on litterfall production in the semiarid region of northeastern Brazil. Braz J Biol, 2015, 75(3): 703-708.

[19]

López-Hernández JM, González-Rodríguez H, Ramírez-Lozano RG, Cantú-Silva I, Gómez-Meza MV, Pando-Moreno M, Estrada-Castillón AE. Deposición de hojarasca y retorno potencial de nutrientes en tres sitios del Estado de Nuevo León, México. Polibotánica, 2013, 35: 65-78.

[20]

Lugo AE, Silver LW, Colón SM. Biomass and nutrient dynamics of restored neotropical forests. Water Air Soil Pollut, 2004, 4: 731-746.

[21]

Martínez-Alonso C, Valladares Ros F, Camarero JJ, López-Arias M, Serrano M, Rodríguez JA. The uncoupling of secondary growth, cone and litter production by intradecadal climatic variability in a mediterranean scots pine forest. For Ecol Manag, 2007, 253: 19-29.

[22]

Martínez-Yrízar A, Nuñez S, Miranda H, Búrquez A. Temporal and spatial variation of litter production in Sonora Desert communities. Plant Ecol, 1999, 145: 37-48.

[23]

McClaugherty CA, Pastor J, Aber JD, Melillo JM. Forest litter decomposition in relation to soil nitrogen dynamics and litter quality. Ecology, 1985, 66(1): 266-275.

[24]

Mendoza CA, Gallardo-Lancho JF, Aceñolaza PG, Turrion MB, Pando V. Temporal evolution of litterfall and potential bio-element return in a successional forest sequence of the Espinal Ecorregion, Argentina. For Syst, 2014, 23(3): 411-424.

[25]

Merino OF (1983) Litterfall production in the thornscrub of the Biological Reservorious of Doñana. Doctoral thesis, University of Sevilla, p 645

[26]

Nakane K. Dynamics of soil organic matter in different parts on a slope under evergreen oak forest. Jpn J Ecol, 1975, 25: 206-216.

[27]

Palma RM, Defrieri RL, Tortarolo MF, Prause J, Gallardo JF. Seasonal changes of bioelements in the litter and their potential return to green leaves in four species of the Argentine subtropical forest. Ann Bot, 2000, 85: 181-186.

[28]

Patricio MS, Nunes LF, Pereira EL. Litterfall and litter decomposition in chestnut high forest stands in northern Portugal. For Syst, 2012, 21(2): 259-271.

[29]

Prescott CE. Litter decomposition: what controls it and how can we alter it to sequester more carbon in forest soils?. Biochemistry, 2010, 101: 133-149.

[30]

Ramírez-Lozano RG, González-Rodriguez H, Gómez-Meza MV, Cantú-Silva I, Uvalle-Sauceda JI. Spatio-temporal variations of macro and trace mineral contents in six native plants consumed by ruminants at northeastern Mexico. Trop Subtrop Agroecosyst, 2010, 12: 267-281.

[31]

Ramírez-Lozano RG, Domínguez-Gómez TG, González-Rodríguez H, Cantú-Silva I, Gómez Meza MV, Sarquís-Ramírez JI, Jurado E. Composición y diversidad de la vegetación en cuatro sitios del noreste de México. Madera y Bosques, 2013, 19: 59-72.

[32]

Read L, Lawrence D. Recovery of biomass following shifting cultivation in dry tropical forests of the Yucatan. Ecol Appl, 2003, 13: 85-97.

[33]

Safou-Matondo R, Deleporte P, Laclau JP, Bouillet JP. Hybrid and clonal variability of nutrient content and nutrient use efficiency in Eucalyptus stands in Congo. For Ecol Manag, 2005, 210: 193-204.

[34]

Santa-Regina I, Tarazona T. Nutrient pools to the soil through organic matter and throughfall under a Scots pine plantation in the Sierra de la Demanda, Spain. Eur J Soil Biol, 2001, 37: 125-133.

[35]

Santa-Regina I, Tarazona T. Organic matter and nitrogen dynamics in a mature forest of common beech in the Sierra de la Demanda, Spain. Ann For Sci, 2001, 58: 301-314.

[36]

Swamy SL, Kushwaha SK, Puri S. Tree growth, biomass, allometry and nutrient distribution in Gmelina arborea stands grown in red lateritic soils of central India. Biomass Bioenerg, 2004, 26: 305-317.

[37]

ter Braak CJF, Šmilauer P. CANOCO reference manual and user’s guide to Canoco for Windows, software for canonical community ordination (version 4), 1998, Ithaca: Microcomputer Power 500

[38]

Ukonmaanaho L, Merilä P, Nöjd P, Nieminen TM. Litterfall production and nutrient return to the forest floor in Scots pine and Norway spruce stands in Finland. Boreal Env Res, 2008, 13: 67-91.

[39]

Vitousek P. Nutrient cycling and nutrient use efficiency. Am Nat, 1982, 119: 553-572.

[40]

Zhou G, Guan L, Wei X, Zhang D, Zhang Q, Yan J, Wen D, Liu J, Liu S, Huang Z, Kong G, Mo J, Yu Q. Litterfall production along successional and altitudinal gradients of subtropical monsoon evergreen broadleaved forest in Guangdong, China. Plant Ecol, 2007, 188: 77-89.

[41]

Zhou Y, Clark M, Su J, Xiao C. Litter decomposition and soil microbial community composition in three Korean pine (Pinus koraiensis) forests along an altitudinal gradient. Plant Soil, 2015, 386: 171-183.

AI Summary AI Mindmap
PDF

111

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/