Mixed-effects modeling for tree height prediction models of Oriental beech in the Hyrcanian forests

Siavash Kalbi , Asghar Fallah , Pete Bettinger , Shaban Shataee , Rassoul Yousefpour

Journal of Forestry Research ›› 2017, Vol. 29 ›› Issue (5) : 1195 -1204.

PDF
Journal of Forestry Research ›› 2017, Vol. 29 ›› Issue (5) : 1195 -1204. DOI: 10.1007/s11676-017-0551-z
Original Paper

Mixed-effects modeling for tree height prediction models of Oriental beech in the Hyrcanian forests

Author information +
History +
PDF

Abstract

Height–diameter relationships are essential elements of forest assessment and modeling efforts. In this work, two linear and eighteen nonlinear height–diameter equations were evaluated to find a local model for Oriental beech (Fagus orientalis Lipsky) in the Hyrcanian Forest in Iran. The predictive performance of these models was first assessed by different evaluation criteria: adjusted R2 (Radj 2), root mean square error (RMSE), relative RMSE (%RMSE), bias, and relative bias (%bias) criteria. The best model was selected for use as the base mixed-effects model. Random parameters for test plots were estimated with different tree selection options. Results show that the Chapman–Richards model had better predictive ability in terms of adj R2 (0.81), RMSE (3.7 m), %RMSE (12.9), bias (0.8), %Bias (2.79) than the other models. Furthermore, the calibration response, based on a selection of four trees from the sample plots, resulted in a reduction percentage for bias and RMSE of about 1.6–2.7%. Our results indicate that the calibrated model produced the most accurate results.

Keywords

Random effects / Tree height / Calibration / Sangdeh forest / Chapman–Richards model / Oriental beech

Cite this article

Download citation ▾
Siavash Kalbi, Asghar Fallah, Pete Bettinger, Shaban Shataee, Rassoul Yousefpour. Mixed-effects modeling for tree height prediction models of Oriental beech in the Hyrcanian forests. Journal of Forestry Research, 2017, 29(5): 1195-1204 DOI:10.1007/s11676-017-0551-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Adame P, del Río M, Cañellas I. A mixed nonlinear height–diameter model for pyrenean oak (Quercus pyrenaica Willd.). For Ecol Manag, 2008, 256: 88-98.

[2]

Ahmadi K, Alavi SJ, Kouchaksaraei MT, Aertsen W. Non-linear height-diameter models for oriental beech (Fagus orientalis Lipsky) in the Hyrcanian Forests, Iran. Biotechnol Agric Soc Environ, 2013, 17(3): 431-440.

[3]

Amaro A, Reed D, Tomé M, Themido I. Modelling dominant height growth: eucalyptus plantations in Portugal. For Sci, 1998, 44(1): 37-46.

[4]

Arcangeli C, Klopf M, Hale SE, Jenkins TAR, Hasenauer H. The uniform height curve method for height–diameter modelling: an application to Sitka spruce in Britain. Forestry, 2014, 87: 177-186.

[5]

Beal SL, Sheiner LB. Estimating population kinetics. Crit Rev Biomed Eng, 1982, 8: 195-222.

[6]

Calama R, Montero G. Interregional nonlinear height–diameter model with random coefficients for stone pine in Spain. Can J For Res, 2004, 34: 150-163.

[7]

Castedo Dorado F, Barrio Anta M, Parresol BR, Álvarez González JG. A stochastic height–diameter model for maritime pine ecoregions in Galicia (northwestern Spain). Ann For Sci, 2005, 62: 455-465.

[8]

Corral-Rivas S, Álvarez-González JG, Crecente-Campo F, Corral-Rivas JJ. Local and generalized height-diameter models with random parameters for mixed, uneven-aged forests in Northwestern Durango, Mexico. For Ecosyst, 2014, 1: 6.

[9]

Curtis RO. Height–diameter and height–diameter–age equations for second-growth Douglas-fir. For Sci, 1967, 13(4): 365-375.

[10]

Gregoire TG. Generalized error structure for forestry yield models. For Sci, 1987, 33: 423-444.

[11]

Hall DB, Bailey RL. Modeling and prediction of forest growth variables based on multilevel nonlinear mixed models. For Sci, 2001, 47: 311-321.

[12]

Huang S. Amaro A, Tomé M. Development of compatible height and site index models for youngand mature stands within an ecosystem-based management framework. Empirical and process-bsed models for forest tree and stand growth simulation, 1997, Lisbon: Edições Salamandra 61 98

[13]

Huang S, Titus SJ, Wiens DP. Comparison of nonlinear height-diameter functions for major Alberta tree species. Can J For Res, 1992, 22: 1297-1304.

[14]

Jayaraman K, Lappi J. Estimation of height–diameter curves through multilevel models with special reference to even-aged teak stands. For Eco Manag, 2001, 142: 155-162.

[15]

Krisnawati H, Wang Y, Ades PK. Generalized height-diameter models for Acacia mangium Wild plantations in south Sumatra. J For Res, 2010, 7(1): 1-19.

[16]

Krumland BE, Wensel LC. A generalized height–diameter equation for coastal California species. West J App For, 1988, 3: 113-115.

[17]

Lappi J, Bailey RL. A height prediction model with random stand and tree parameters: an alternative to traditional site index methods. For Sci, 1988, 34: 907-927.

[18]

Lei YC, Zhang SY. Features and partial derivatives of Bertalanffy-Richards growth model in forestry. Nonlinear Anal Model Control, 2004, 9(1): 65-73.

[19]

Lindstrom MJ, Bates DM. Nonlinear mixed effects for repeated measures data. Bio, 1990, 46: 673-687.

[20]

Littell RC, Milliken GA, Stroup WW, Wolfinger RD. SAS system for mixed models, 1996, Cary: SAS Institute Inc..

[21]

Lundqvist B. On the height growth in cultivated stands of pine and spruce in Northern Sweden. Meddelanden Fran Statens Skogforsk, 1957, 47: 1-64.

[22]

Meyer HA. A mathematical expression for height curves. J For, 1940, 38: 415-420.

[23]

Michaelis L, Menten ML. Die kinetik der invertinwirkung. Biochem Z, 1913, 49: 333-369.

[24]

Michailoff I. Zahlenmässiges verfahren für die ausführung der bestandeshöhenkurven forstw. Forstwissenschaftliches Centralblatt und Tharandter Forstliches Jahrbuch, 1943, 6: 273-279.

[25]

Näslund M. Skogsförsöksanstaltens gallringsförsök i tallskog. Meddelanden från Statens Skogsförsöksanstalt, 1936, 29: 1-169.

[26]

Neter J, Wasserman W, Kutner MH. Applied linear regression models, 1990, Irwin: Richard D.

[27]

Pearl R, Reed LJ. On the rate of growth of the population of the united states since 1790 and its mathematical representation. Proc Natl Acad Sci, 1920, 6: 275-288.

[28]

Peng C, Zhang L, Huang S, Zhou X, Parton J, Woods M (2001) Developing ecoregion-based height–diameter models for jack pine and black spruce in Ontario. Ontario Ministry of Natural Resources, Ontario Forest Research Institute, Sault Ste. Marie, Ontario. For Res Report No. 159, p 10

[29]

Peschel W. Mathematical methods for growth studies of trees and forest stands and the results of their application. Tharandter Forstliches Jahrbirch, 1938, 89: 169-247.

[30]

Pretzsch H. Forest dynamics, growth and yield: from measurement to model, 2009, Berlin: Springer

[31]

Ratkowsky DA. Handbook of nonlinear regression, 1990, New York: Marcel Deccer Inc..

[32]

Richards FJ. A flexible growth function for empirical use. J Exp Bot, 1959, 10(2): 290-300.

[33]

Sagheb-Talebi K, Yazdian F, Sajedi T. Forests of Iran, 2004, Tehran: Institute of Forests and Rangelands (RIFR).

[34]

Schmidt M, Hanewinkel M, Kändler G, Kublin E, Kohnle U. An inventory-based approach for modeling single tree storm damage—experiences with the winter storm of 1999 in southwestern Germany. Can J For Res, 2010, 40: 1636-1652.

[35]

Schumacher FX. A new growth curve and its application to timber yield studies. J For, 1939, 37: 819-820.

[36]

Sharma RP. Modeling height-diameter relationships for Chir pine trees. Banko Janakari, 2009, 19(2): 3-9.

[37]

Sibbesen E. Some new equations to describe phosphate sorption by soils. J Soil Sci, 1981, 32: 67-74.

[38]

Soares P, Tomé M. Height–diameter equation for first rotation eucalypt plantations in Portugal. For Eco Manag, 2002, 166: 99-109.

[39]

Stoffels A, van Soest J. The main problems in sample plots. Ned Boschb Tijdschr, 1953, 25: 190-199.

[40]

Strand L. The accuracy of some methods for estimating volume and increment on sample plots. Medd. Norske Skogfors., 1959, 15(4): 284-392. (in Norwegian with English summary)

[41]

Temesgen H, Gadow KV. Generalized height–diameter models—an application for major tree species in complex stands of interior British Columbia. Eur J For Res, 2004, 123: 45-51.

[42]

Trincado G, Vanderschaaf CL, Burkhart HE. Regional mixed-effects height–diameter models for loblolly pine (Pinus taeda L.) plantations. Eur J For Res, 2007, 126: 253-262.

[43]

van Laar A, Akça A. Forest mensuration, 2007, Dordrecht: Springer

[44]

Vanclay JK. Modelling forest growth and yield—application to mixed tropical forests, 1994, Wallingford: CAB International.

[45]

Vonesh EF, Chinchilli VM. Linear and nonlinear models for the analysis of repeated measurements, 1997, New York: Marcel Dekker Inc.

[46]

West PW, Ratkowsky DA, Davis AW. Problems of hypothesis testing of regressions with multiple measurements from individual sampling units. For Eco Manag, 1984, 7: 207-224.

[47]

Wolfinger RD, Lin X. Two Taylor-series approximation methods for nonlinear mixed models. Comput Stat Data Anal, 1997, 25: 465-490.

[48]

Wykoff WR, Crookston NL, Stage AR (1982) User’s guide to the stand prognosis model. USDA Forest Service, Intermountain Forest and Range Experimental Station, Ogden, UT. General Technical Report INT-133, p 112

[49]

Xu H, Sun Y, Wang X, Li Y. Height-diameter models of Chinese fir (Cunninghamia lanceolata) based on nonlinear mixed-effects models in Southeast China. Adv J Food Sci Technol, 2014, 6(4): 445-452.

[50]

Yang RC, Kozak A, Smith JHG. The potential of Weibull-type functions as flexible growth curves. Can J For Res, 1978, 8: 424-431.

[51]

Yang Y, Huang S, Meng SX, Trincado G, VanderSchaaf CL. A multilevel individual tree basal area increment model for aspen in boreal mixedwood stands. Can J For Res, 2009, 39: 2203-2214.

[52]

Yq Li, X-w Deng, Z-h Huang, W-h Xiang, W-d Yan, P-f Lei, X-l Zhou, C-h Peng. Development and evaluation of models for the relationship between tree height and diameter at breast height for Chinese-fir plantations in subtropical China. PLoS ONE, 2015 10 4 e0125118

[53]

Yuancai L, Parresol BR (2001) Remarks on height–diameter modelling. USDA Forest Service, Southern Research Station, Asheville, NC. Research Note SRS-10, p 5

[54]

Zeide B. Analysis of growth equations. For Sci, 1993, 39: 594-616.

[55]

Zhang L. Cross-validation of non-linear growth functions for modeling tree height–diameter distributions. Ann Bot, 1997, 79: 251-257.

AI Summary AI Mindmap
PDF

139

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/