Variations in the biomass of Eucalyptus plantations at a regional scale in Southern China

Quanyi Qiu , Guoliang Yun , Shudi Zuo , Jing Yan , Lizhong Hua , Yin Ren , Jianfeng Tang , Yaying Li , Qi Chen

Journal of Forestry Research ›› 2017, Vol. 29 ›› Issue (5) : 1263 -1276.

PDF
Journal of Forestry Research ›› 2017, Vol. 29 ›› Issue (5) : 1263 -1276. DOI: 10.1007/s11676-017-0534-0
Original Paper

Variations in the biomass of Eucalyptus plantations at a regional scale in Southern China

Author information +
History +
PDF

Abstract

We quantified deviations in regional forest biomass from simple extrapolation of plot data by the biomass expansion factor method (BEF) versus estimates obtained from a local biomass model, based on large-scale empirical field inventory sampling data. The sources and relative contributions of deviations between the two models were analyzed by the boosted regression trees method. Relative to the local model, BEF overestimated accumulative biomass by 22.12%. The predominant sources of the total deviation (70.94%) were stand-structure variables. Stand age and diameter at breast height are the major factors. Compared with biotic variables, abiotic variables had a smaller overall contribution (29.06%), with elevation and soil depth being the most important among the examined abiotic factors. Large deviations in regional forest biomass and carbon stock estimates are likely to be obtained with BEF relative to estimates based on local data. To minimize deviations, stand age and elevation should be included in regional forest-biomass estimation.

Keywords

BEF / Boosted regression trees / Eucalyptus plantations / Local biomass model / Regional biomass estimation / Biotic versus abiotic factors / Uncertainty analysis

Cite this article

Download citation ▾
Quanyi Qiu, Guoliang Yun, Shudi Zuo, Jing Yan, Lizhong Hua, Yin Ren, Jianfeng Tang, Yaying Li, Qi Chen. Variations in the biomass of Eucalyptus plantations at a regional scale in Southern China. Journal of Forestry Research, 2017, 29(5): 1263-1276 DOI:10.1007/s11676-017-0534-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Albaugh TJ, Bergh J, Lundmark T, Nilsson U, Stape JL, Allen HL, Linder S. Do biological expansion factors adequately estimate stand-scale aboveground component biomass for Norway spruce?. For Ecol Manag, 2009, 258(12): 2628-2637.

[2]

Alves LF, Vieira SA, Scaranello MA, Camargo PB, Santos FAM, Joly CA, Martinelli LA. Forest structure and live aboveground biomass variation along an elevational gradient of tropical Atlantic moist forest (Brazil). For Ecol Manag, 2010, 260(5): 679-691.

[3]

Antonio N, Tome M, Tome J, Soares P, Fontes L. Effect of tree, stand, and site variables on the allometry of Eucalyptus globulus tree biomass. Can J For Res Rev Can Rec For, 2007, 37(5): 895-906.

[4]

Arias D, Calvo-Alvarado J, Richter DD, Dohrenbusch A. Productivity, aboveground biomass, nutrient uptake and carbon content in fast-growing tree plantations of native and introduced species in the Southern Region of Costa Rica. Biomass Bioenergy, 2011, 35(5): 1779-1788.

[5]

Asner GP, Hughes RF, Varga TA, Knapp DE, Kennedy-Bowdoin T. Environmental and biotic controls over aboveground biomass throughout a tropical rain forest. Ecosystems, 2009, 12(2): 261-278.

[6]

Axmanova I, Zeleny D, Li CF, Chytry M. Environmental factors influencing herb layer productivity in Central European oak forests: insights from soil and biomass analyses and a phytometer experiment. Plant Soil, 2011, 342(1–2): 183-194.

[7]

Baghdadi N, Le Maire G, Bailly JS, Ose K, Nouvellon Y, Zribi M, Lemos C, Hakamada R. Evaluation of ALOS/PALSAR L-band data for the estimation of Eucalyptus plantations aboveground biomass in Brazil. IEEE J Sel Top Appl Earth Obs Remote Sens, 2015, 8(8): 3802-3811.

[8]

Baraloto C, Rabaud S, Molto Q, Blanc L, Fortunel C, Herault B, Davila N, Mesones I, Rios M, Valderrama E, Fine PVA. Disentangling stand and environmental correlates of aboveground biomass in Amazonian forests. Glob Change Biol, 2011, 17(8): 2677-2688.

[9]

Barker D, Huang XY, Liu ZQ, Auligne T, Zhang X, Rugg S, Ajjaji R, Bourgeois A, Bray J, Chen YS, Demirtas M, Guo YR, Henderson T, Huang W, Lin HC, Michalakes J, Rizvi S, Zhang XY. The weather research and forecasting model’s community variational/ensemble data assimilation system WRFDA. Bull Am Meteorol Soc, 2012, 93(6): 831-843.

[10]

Basuki TM, van Laake PE, Skidmore AK, Hussin YA. Allometric equations for estimating the above-ground biomass in tropical lowland Dipterocarp forests. For Ecol Manag, 2009, 257(8): 1684-1694.

[11]

Bishop CH, Hodyss D. Adaptive ensemble covariance localization in ensemble 4D-VAR state estimation. Mon Weather Rev, 2011, 139(4): 1241-1255.

[12]

Bottcher H, Freibauer A, Obersteiner M, Schulze ED. Uncertainty analysis of climate change mitigation options in the forestry sector using a generic carbon budget model. Ecol Model, 2008, 213(1): 45-62.

[13]

Carrassi A, Trevisan A, Descamps L, Talagrand O, Uboldi F. Controlling instabilities along a 3DVar analysis cycle by assimilating in the unstable subspace: a comparison with the EnKF. Nonlinear Process Geophys, 2008, 15(4): 503-521.

[14]

Chapin FS, Bloom AJ, Field CB, Waring RH. Plant-responses to multiple environmental-factors. Bioscience, 1987, 37(1): 49-57.

[15]

Chen XG, Luo YJ, Zhou YF, Lu M. Carbon sequestration potential in stands under the grain for green program in southwest China. PLoS ONE, 2016 11 3 e0150992

[16]

de Castilho CV, Magnusson WE, de Araujo RNO, Luizao RCC, Lima AP, Higuchi N. Variation in aboveground tree live biomass in a central Amazonian Forest: effects of soil and topography. For Ecol Manag, 2006, 234(1–3): 85-96.

[17]

DeWalt SJ, Chave J. Structure and biomass of four lowland Neotropical forests. Biotropica, 2004, 36(1): 7-19.

[18]

Du H, Zeng FP, Peng WX, Wang KL, Zhang H, Liu L, Song TQ. Carbon storage in a Eucalyptus plantation chronosequence in southern China. Forests, 2015, 6(6): 1763-1778.

[19]

Dube T, Mutanga O. The impact of integrating WorldView-2 sensor and environmental variables in estimating plantation forest species aboveground biomass and carbon stocks in uMgeni Catchment, South Africa. ISPRS J Photogramm Remote Sens, 2016, 119: 415-425.

[20]

Elith J, Leathwick JR, Hastie T. A working guide to boosted regression trees. J Anim Ecol, 2008, 77(4): 802-813.

[21]

Fang JY, Chen AP, Peng CH, Zhao SQ, Ci L. Changes in forest biomass carbon storage in China between 1949 and 1998. Science, 2001, 292(5525): 2320-2322.

[22]

Ferry B, Morneau F, Bontemps JD, Blanc L, Freycon V. Higher treefall rates on slopes and waterlogged soils result in lower stand biomass and productivity in a tropical rain forest. J Ecol, 2010, 98(1): 106-116.

[23]

Gama FF, dos Santos JR, Mura JC. Continuous monitoring of biophysical Eucalyptus sp. parameters using interferometric synthetic aperture radar data in P and X bands. J Appl Remote Sens, 2016 10 2 026002

[24]

Goodale CL, Apps MJ, Birdsey RA, Field CB, Heath LS, Houghton RA, Jenkins JC, Kohlmaier GH, Kurz W, Liu SR, Nabuurs GJ, Nilsson S, Shvidenko AZ. Forest carbon sinks in the northern hemisphere. Ecol Appl, 2002, 12(3): 891-899.

[25]

Guo ZD, Fang JY, Pan YD, Birdsey R. Inventory-based estimates of forest biomass carbon stocks in China: a comparison of three methods. For Ecol Manag, 2010, 259(7): 1225-1231.

[26]

Hilker T, Wulder MA, Coops NC, Linke J, McDermid G, Masek JG, Gao F, White JC. A new data fusion model for high spatial- and temporal-resolution mapping of forest disturbance based on Landsat and MODIS. Remote Sens Environ, 2009, 113(8): 1613-1627.

[27]

IPCC (2003) Good practice guidance for land use change, land-use change and forestry, Japan. http://www.ipcc-nggip.iges.or.jp/public/gpglulucf/gpglulucf_files/GPG_LULUCF_FULL.pdf. Accessed 20 May 17

[28]

Jalabert SSM, Martin MP, Renaud JP, Boulonne L, Jolivet C, Montanarella L, Arrouays D. Estimating forest soil bulk density using boosted regression modelling. Soil Manag, 2010, 26(4): 516-528.

[29]

Jalkanen A, Makipaa R, Stahl G, Lehtonen A, Petersson H. Estimation of the biomass stock of trees in Sweden: comparison of biomass equations and age-dependent biomass expansion factors. Ann For Sci, 2005, 62(8): 845-851.

[30]

Jing Q, Conijn SJG, Jongschaap REE, Bindraban PS. Modeling the productivity of energy crops in different agro-ecological environments. Biomass Bioenergy, 2012, 46: 618-633.

[31]

Ju WM, Chen JM, Black TA, Barr AG, Mccaughey H, Roulet NT. Hydrological effects on carbon cycles of Canada’s forests and wetlands. Tellus Ser B Chem Phys Meteorol, 2006, 58(1): 16-30.

[32]

Kalboussi M, Achour H (2017) Modelling the spatial distribution of snake species in northwestern Tunisia using maximum entropy (Maxent) and Geographic Information System (GIS). J For Res 1–13. https://doi.org/10.1007/s11676-017-0436-1

[33]

Larocque GR, Bhatti JS, Boutin R, Chertov O. Uncertainty analysis in carbon cycle models of forest ecosystems: research needs and development of a theoretical framework to estimate error propagation. Ecol Model, 2008, 219(3–4): 400-412.

[34]

Laumonier Y, Edin A, Kanninen M, Munandar AW. Landscape-scale variation in the structure and biomass of the hill dipterocarp forest of Sumatra: implications for carbon stock assessments. For Ecol Manag, 2010, 259(3): 505-513.

[35]

Laurance WF, Fearnside PM, Laurance SG, Delamonica P, Lovejoy TE, Rankin-de Merona J, Chambers JQ, Gascon C. Relationship between soils and Amazon forest biomass: a landscape-scale study. For Ecol Manag, 1999, 118(1–3): 127-138.

[36]

le Maire G, Marsden C, Nouvellon Y, Grinand C, Hakamada R, Stape JL, Laclau JP. MODIS NDVI time-series allow the monitoring of Eucalyptus plantation biomass. Remote Sens Environ, 2011, 115(10): 2613-2625.

[37]

Lehtonen A, Makipaa R, Heikkinen J, Sievanen R, Liski J. Biomass expansion factors (BEFs) for Scots pine, Norway spruce and birch according to stand age for boreal forests. For Ecol Manag, 2004, 188(1–3): 211-224.

[38]

Lehtonen A, Cienciala E, Tatarinov F, Makipaa R. Uncertainty estimation of biomass expansion factors for Norway spruce in the Czech Republic. Ann For Sci, 2007, 64(2): 133-140.

[39]

Levy PE, Hale SE, Nicoll BC. Biomass expansion factors and root: shoot ratios for coniferous tree species in Great Britain. Forestry, 2004, 77(5): 421-430.

[40]

Lorenc AC. The potential of the ensemble Kalman filter for NWP—a comparison with 4D-Var. Q J R Meteorol Soc, 2003, 129(595): 3183-3203.

[41]

Luo YJ, Wang XK, Zhang XQ, Ren Y, Poorter H. Variation in biomass expansion factors for China’s forests in relation to forest type, climate, and stand development. Ann For Sci, 2013, 70(6): 589-599.

[42]

Malhi Y, Wood D, Baker TR, Wright J, Phillips OL, Cochrane T, Meir P, Chave J, Almeida S, Arroyo L, Higuchi N, Killeen TJ, Laurance SG, Laurance WF, Lewis SL, Monteagudo A, Neill DA, Vargas PN, Pitman NCA, Quesada CA, Salomao R, Silva JNM, Lezama AT, Terborgh J, Martinez RV, Vinceti B. The regional variation of aboveground live biomass in old-growth Amazonian forests. Glob Change Biol, 2006, 12(7): 1107-1138.

[43]

Martin MP, Wattenbach M, Smith P, Meersmans J, Jolivet C, Boulonne L, Arrouays D. Spatial distribution of soil organic carbon stocks in France. Biogeosciences, 2011, 8(5): 1053-1065.

[44]

Mascaro J, Asner GP, Muller-Landau HC, van Breugel M, Hall J, Dahlin K. Controls over aboveground forest carbon density on Barro Colorado Island, Panama. Biogeosciences, 2011, 8(6): 1615-1629.

[45]

Miranda-Aragon L, Trevino-Garza EJ, Jimenez-Perez J, Aguirre-Calderon OA, Gonzalez-Tagle MA, Pompa-Garcia M, Aguirre-Salado CA. Modeling susceptibility to deforestation of remaining ecosystems in north central mexico with logistic regression. J For Res, 2012, 23(3): 345-354.

[46]

Montagu KD, Duttmer K, Barton CVM, Cowie AL. Developing general allometric relationships for regional estimates of carbon sequestration—an example using Eucalyptus pilularis from seven contrasting sites. For Ecol Manag, 2005, 204(1): 113-127.

[47]

Padalia H, Yadav S. Evaluation of RISAT-1 SAR data for tropical forestry applications. Adv Space Res, 2017, 59(1): 2-11.

[48]

Pajtik J, Konopka B, Lukac M. Biomass functions and expansion factors in young Norway spruce (Picea abies [L.] Karst) trees. For Ecol Manag, 2008, 256(5): 1096-1103.

[49]

Pan YD, Luo TX, Birdsey R, Hom J, Melillo J. New estimates of carbon storage and sequestration in China’s forests: effects of age-class and method on inventory-based carbon estimation. Clim Change, 2004, 67(2–3): 211-236.

[50]

Paoli GD, Curran LM, Slik JWF. Soil nutrients affect spatial patterns of aboveground biomass and emergent tree density in southwestern Borneo. Oecologia, 2008, 155(2): 287-299.

[51]

Paul KI, Roxburgh SH, Ritson P, Brooksbank K, England JR, Larmour JS, Raison RJ, Peck A, Wildy DT, Sudmeyer RA, Giles R, Carter J, Bennett R, Mendham DS, Huxtable D, Bartle JR. Testing allometric equations for prediction of above-ground biomass of mallee eucalypts in southern Australia. For Ecol Manag, 2013, 310: 1005-1015.

[52]

Paul KI, Roxburgh SH, Chave J, England JR, Zerihun A, Specht A, Lewis T, Bennett LT, Baker TG, Adams MA, Huxtable D, Montagu KD, Falster DS, Feller M, Sochacki S, Ritson P, Bastin G, Bartle J, Inildy D, Hobbs T, Armour JL, Waterworth R, Stewart HTL, Jonsonf J, Forrester DI, Applegate G, Mendhan D, Bradford M, O’Grady A, Green D, Sudmeyer R, Rance SJ, Turner J, Barton C, Wenk EH, Grove T, Attiwill PM, Pinkard E, Butler D, Brooksbank K, Spencer B, Snowdon P, O’Brien N, Battaglia M, Cameron DM, Hamilton S, Mcauthur G, Sinclair A. Testing the generality of above-ground biomass allometry across plant functional types at the continent scale. Glob Change Biol, 2016, 22(6): 2106-2124.

[53]

Perez-Cruzado C, Munoz-Saez F, Basurco F, Riesco G, Rodriguez-Soalleiro R. Combining empirical models and the process-based model 3-PG to predict Eucalyptus nitens plantations growth in Spain. For Ecol Manag, 2011, 262(6): 1067-1077.

[54]

Petersson H, Holm S, Stahl G, Alger D, Fridman J, Lehtonen A, Lundstrom A, Makipaa R. Individual tree biomass equations or biomass expansion factors for assessment of carbon stock changes in living biomass—a comparative study. For Ecol Manag, 2012, 270: 78-84.

[55]

Raimundo MR, Scolforo HF, de Mello JM, Scolforo JRS, McTague JP, dos Reis AA. Geostatistics applied to growth estimates in continuous forest inventories. For Sci, 2017, 63(1): 29-38.

[56]

Ren Y, Wei XH, Zhang L, Cui SH, Chen F, Xiong YZ, Xie PP. Potential for forest vegetation carbon storage in Fujian Province, China, determined from forest inventories. Plant Soil, 2011, 345(1–2): 125-140.

[57]

Ren Y, Yan J, Wei XH, Wang YJ, Yang YS, Hua LH, Xiong YZ, Niu X, Song XD. Effects of rapid urban sprawl on urban forest carbon stocks: integrating remotely sensed, GIS and forest inventory data. J Environ Manag, 2012, 113: 447-455.

[58]

Ren Y, Wei XH, Wang DR, Luo YJ, Song XD, Wang YJ, Yang YS, Hua LZ. Linking landscape patterns with ecological functions: a case study examining the interaction between landscape heterogeneity and carbon stock of urban forests in Xiamen, China. For Ecol Manag, 2013, 293: 122-131.

[59]

Ren Y, Chen SS, Wei XH, Xi WM, Luo YJ, Song XD, Zuo SD, Yang YS. Disentangling the factors that contribute to variation in forest biomass increments in the mid-subtropical forests of China. J For Res, 2016, 27(4): 919-930.

[60]

Ren Y, Zhang C, Zuo SD, Li ZW. Scaling up of biomass simulation for Eucalyptus plantations based on landsenses ecology. Int J Sustain Dev World Ecol, 2017, 24(2): 135-148.

[61]

Saint-Andre L, M’bou AT, Mabiala A, Mouvondy W, Jourdan C, Roupsard O, Deleporte P, Hamel O, Nouvellon Y. Age-related equations for above- and below-ground biomass of a Eucalyptus hybrid in Congo. For Ecol Manag, 2005, 205(1–3): 199-214.

[62]

Shahbudin S, Zuhairi A, Kamaruzzaman BY. Impact of coastal development on mangrove cover in Kilim river, Langkawi Island, Malaysia. J For Res, 2012, 23(2): 185-190.

[63]

Shankhwar AK, Srivastava RK. Biomass production through grey water fertigation in Eucalyptus hybrid and its economic significance. Environ Progress Sustain Energy, 2015, 34(1): 222-226.

[64]

Silva AGP, Goergens EB, Campoe OC, Alvares CA, Stape JL, Rodriguez LCE. Assessing biomass based on canopy height profiles using airborne laser scanning data in Eucalypt plantations. Sci Agric, 2015, 72(6): 504-512.

[65]

Simpson D, Guenther A, Hewitt CN, Steinbrecher R. Biogenic emissions in Europe.1. Estimates and uncertainties. J Geophys Res Atmos, 1995, 100(D11): 22875-22890.

[66]

Singh V, Tewari A, Kushwaha SPS, Dadhwal VK. Formulating allometric equations for estimating biomass and carbon stock in small diameter trees. For Ecol Manag, 2011, 261(11): 1945-1949.

[67]

Sochacki SJ, Ritson P, Brand B, Harper RJ, Dell B. Accuracy of tree root biomass sampling methodologies for carbon mitigation projects. Ecol Eng, 2017, 98: 264-274.

[68]

Stegen JC, Swenson NG, Valencia R, Enquist BJ, Thompson J. Above-ground forest biomass is not consistently related to wood density in tropical forests. Glob Ecol Biogeogr, 2009, 18(5): 617-625.

[69]

Stinson G, Kurz WA, Smyth CE, Neilson ET, Dymond CC, Metsaranta JM, Boisvenue C, Rampley GJ, Li Q, White TM, Blain D. An inventory-based analysis of Canada’s managed forest carbon dynamics, 1990 to 2008. Glob Change Biol, 2011, 17(6): 2227-2244.

[70]

Teobaldelli M, Somogyi Z, Migliavacca M, Usoltsev VA. Generalized functions of biomass expansion factors for conifers and broadleaved by stand age, growing stock and site index. For Ecol Manag, 2009, 257(3): 1004-1013.

[71]

Tickle PK, Coops NC, Hafner SD, Team BS. Assessing forest productivity at local scales across a native eucalypt forest using a process model, 3PG-SPATIAL. For Ecol Manag, 2001, 152(1–3): 275-291.

[72]

Van Oijen M, Rougier J, Smith R. Bayesian calibration of process-based forest models: bridging the gap between models and data. Tree Physiol, 2005, 25(7): 915-927.

[73]

van Oijen M, Cameron DR, Butterbach-Bahl K, Farahbakhshazad N, Jansson PE, Kiese R, Rahn KH, Werner C, Yeluripati JB. A Bayesian framework for model calibration, comparison and analysis: application to four models for the biogeochemistry of a Norway spruce forest. Agric For Meteorol, 2011, 151(12): 1609-1621.

[74]

Vieilledent G, Vaudry R, Andriamanohisoa SFD, Rakotonarivo OS, Randrianasolo HZ, Razafindrabe HN, Rakotoarivony CB, Ebeling J, Rasamoelina M. A universal approach to estimate biomass and carbon stock in tropical forests using generic allometric models. Ecol Appl, 2012, 22(2): 572-583.

[75]

Volkova L, Bi HQ, Murphy S, Weston CJ. Empirical estimates of aboveground carbon in open Eucalyptus forests of south-eastern Australia and its potential implication for National Carbon Accounting. Forests, 2015, 6(10): 3395-3411.

[76]

Wang S, Chen JM, Ju WM, Feng X, Chen M, Chen P, Yu G. Carbon sinks and sources in China’s forests during 1901–2001. J Environ Manag, 2007, 85(3): 524-537.

[77]

Wulder MA, White JC, Coops NC, Butson CR. Multi-temporal analysis of high spatial resolution imagery for disturbance monitoring. Remote Sens Environ, 2008, 112(6): 2729-2740.

[78]

Zhang CH, Ju WM, Chen JM, Zan M, Li DQ, Zhou YL, Wang XQ. China’s forest biomass carbon sink based on seven inventories from 1973 to 2008. Clim Change, 2013, 118(3–4): 933-948.

AI Summary AI Mindmap
PDF

140

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/