Analysis and characterization of the Salix suchowensis chloroplast genome

Congrui Sun , Jie Li , Xiaogang Dai , Yingnan Chen

Journal of Forestry Research ›› 2017, Vol. 29 ›› Issue (4) : 1003 -1011.

PDF
Journal of Forestry Research ›› 2017, Vol. 29 ›› Issue (4) : 1003 -1011. DOI: 10.1007/s11676-017-0531-3
Original Paper

Analysis and characterization of the Salix suchowensis chloroplast genome

Author information +
History +
PDF

Abstract

By screening sequence reads from the Salix suchowensis chloroplast (cp) genome that were generated by next-generation sequencing platforms, we assembled a complete circular pseudomolecule for the cp genome. This pseudomolecule is 155,508 bp long and has a typical quadripartite structure that contains two single copy regions, a large single copy region (LSC, 84,385 bp), and a small single copy region (SSC, 16,209 bp) separated by inverted repeat regions (IRs, 27,457 bp). Gene annotation revealed that the S. suchowensis cp genome encoded 119 unique genes, including four ribosome RNA genes, 30 transfer RNA genes, 82 protein-coding genes, and three pseudogenes. Analysis of the repetitive sequences revealed 31 tandem repeats, 16 forward repeats, and five palindromic repeats. In addition, a total of 148 perfect microsatellites, which were characterized as A/T dominant in nucleotide composition, were detected. Significant shifting of the IR/SSC boundaries was revealed by comparing this cp genome with those of other rosid plants. We also constructed phylogenetic trees to demonstrate the phylogenetic position of S. suchowensis in Rosidae based on 66 orthologous protein-coding genes present in the cp genomes of 32 species. Sequencing 30 amplicons based on the pseudomolecule for experimental verification revealed 99.88% accuracy for the S. suchowensis cp genome assembly. Therefore, we assembled a high-quality pseudomolecule of the S. suchowensis cp genome, which is a useful resource for facilitating development of this shrub willow into a more productive bioenergy crop.

Keywords

Salix suchowensis / Chloroplast / Genome structure / Gene content / Phylogenetic tree

Cite this article

Download citation ▾
Congrui Sun, Jie Li, Xiaogang Dai, Yingnan Chen. Analysis and characterization of the Salix suchowensis chloroplast genome. Journal of Forestry Research, 2017, 29(4): 1003-1011 DOI:10.1007/s11676-017-0531-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Arroyo-Garcia R, Ruiz-Garcia L, Bolling L, Ocete R, Lopez MA Multiple origins of cultivated grapevine (Vitis vinifera L. ssp. sativa) based on chloroplast DNA polymorphisms. Mol Ecol, 2006, 15(12): 3707-3714.

[2]

Benson G. Tandem repeats finder: a program to analyze dna sequences. Nucleic Acids Res, 1999, 27(2): 573-580.

[3]

Cavalier-Smith T. Chloroplast evolution: secondary symbiogenesis and multiple losses. Curr Biol Cb, 2002, 12(2): 62-64.

[4]

Chen J, Hao Z, Xu H, Yang L, Liu G The complete chloroplast genome sequence of the relict woody plant Metasequoia glyptostroboides hu et cheng. Front Plant Sci, 2015, 6: 447.

[5]

Dai X, Hu Q, Cai Q, Feng K, Ye N The willow genome and divergent evolution from poplar after the common genome duplication. Cell Res, 2014, 24(10): 1274-1277.

[6]

Daniell H. Transgene containment by maternal inheritance: effective or elusive?. Proc Natl Acad Sci, 2007, 104(17): 6879-6880.

[7]

Daniell H, Khan MS, Allison L. Milestones in chloroplast genetic engineering: an environmentally friendly era in biotechnology. Trends Plant Sci, 2002, 7(2): 84-91.

[8]

Drescher A, Ruf S, Calsa T, Carrer H, Bock R. The two largest chloroplast genome-encoded open reading frames of higher plants are essential genes. Plant J, 2000, 22(2): 97-104.

[9]

Ewing B, Hillier LD, Wendl MC, Green P. Base-calling of automated sequencer traces using phred. i. accuracy assessment. Genome Res, 1998, 8(3): 175-185.

[10]

Fang Z, Zhao S, Skvortsov AK. Zheng-yi W, Raven PH. Saliceae. Flora of China, 1999, St. Louis: Missouri Botanical Garden Press 139 274

[11]

Goulding SE, Wolfe KH, Olmstead RG, Morden CW. Ebb and flow of the chloroplast inverted repeat. Mol Gen Genet MGG, 1996, 252(1–2): 195-206.

[12]

Huang CY, Ayliffe MA, Timmis JN. Direct measurement of the transfer rate of chloroplast dna into the nucleus. Nature, 2003, 422(6927): 72-76.

[13]

Kuang D, Wu H, Wang Y, Gao L, Zhang S Complete chloroplast genome sequence of Magnolia kwangsiensis (Magnoliaceae): implication for DNA barcoding and population genetics. Genome, 2011, 54: 663-673.

[14]

Lalitha S. Primer premier 5. Biotech Softw Internet Rep, 2000, 1(6): 270-272.

[15]

Larkin MA, Blackshields G, Brown NP, Chenna RM, McGettigan PA Clustal w and clustal x version 2.0. Bioinformatics, 2007, 23(21): 2947-2948.

[16]

Ma Q, Li S, Bi C, Hao Z, Sun C, Ning Y. Complete chloroplast genome sequence of a major economic species, Ziziphus jujuba (Rhamnaceae). Curr Genet, 2016, 63: 1-13.

[17]

Mcpherson H, Merwe MVD, Delaney SK, Edwards MA, Henry RJ Capturing chloroplast variation for molecular ecology studies: a simple next generation sequencing approach applied to a rainforest tree. BMC Ecol, 2013, 13(1): 53-65.

[18]

Millen RS, Olmstead RG, Adams KL, Palmer JD, Lao NT Many parallel losses of infa from chloroplast DNA during angiosperm evolution with multiple independent transfers to the nucleus. Plant Cell, 2001, 13(3): 645-658.

[19]

Neuhaus HE, Emes MJ. Nonphotosynthetic metabolism in plastids. Annu Rev Plant Biol, 2000, 51(4): 111-140.

[20]

Nock CJ, Baten A, King GJ. Complete chloroplast genome of Macadamia integrifolia confirms the position of the gondwanan early-diverging eudicot family proteaceae. BMC Genom, 2014 15 Suppl 9 S13

[21]

Palmer JD, Jansen RK, Michaels HJ, Chase MW, Manhart JR. Chloroplast DNA variation and plant phylogeny. Ann Mo Bot Gard, 1988, 75(4): 1180-1206.

[22]

Pyke KA. Plastid division and development. Plant Cell, 1999, 11(4): 549-556.

[23]

Qian J, Song J, Gao H, Zhu Y, Xu J The complete chloroplast genome sequence of the medicinal plant Salvia miltiorrhiza. PLoS ONE, 2013 8 2 e57607

[24]

Raubeson LA, Jansen RK. Henry RJ. Chloroplast genomes of plants. Plant diversity and evolution: genotypic and phenotypic variation in higher plants, 2005, Cambridge, MA: CABI Publishing 45 68

[25]

Reboud X, Zeyl C. Organelle inheritance in plants. Heredity, 1994, 72(2): 132-140.

[26]

Sanchezpuerta MV, Abbona CC. The chloroplast genome of Hyoscyamus niger and a phylogenetic study of the tribe hyoscyameae (solanaceae). PLoS ONE, 2014 9 5 e98353

[27]

Sato S, Nakamura Y, Kaneko T, Asamizu E, Tabata S. Complete structure of the chloroplast genome of Arabidopsis thaliana. DNA Res, 1999, 6(5): 283-290.

[28]

Schattner P, Brooks AN, Lowe TM. The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucleic Acids Res, 2005, 33(suppl 2): W686-W689.

[29]

Sherman-Broyles S, Bombarely A, Grimwood J, Schmutz J, Doyle J. Complete plastome sequences from glycine syndetika and six additional perennial wild relatives of soybean. G3: genes Genomes. Genetics, 2014, 4(10): 2023-2033.

[30]

Smart LB, Cameron KD. Genetic improvement of Willow (Salix spp.) as a dedicated bioenergy crop. Genet Improv Bioenergy Crops, 2008, 2: 377-396.

[31]

Stegemann S, Bock R. Experimental reconstruction of functional gene transfer from the tobacco plastid genome to the nucleus. Plant Cell, 2006, 18(11): 2869-2878.

[32]

Sugiura M. The chloroplast genome. Essays Biochem, 1995, 30(1): 49-57.

[33]

Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. Mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol, 2013, 30(12): 2725-2729.

[34]

Timmis JN, Ayliffe MA, Huang CY, Martin W. Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Nat Rev Genet, 2004, 5(2): 123-135.

[35]

Treangen TJ, Sommer DD, Angly FE, Koren S, Pop M. Next generation sequence assembly with AMOS. Curr Protoc Bioinform, 2011, 33: 11.8.1-11.8.18.

[36]

Tuskan GA, DiFazio S, Jansson S, Bohlmann J, Grigoriev I The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science, 2006, 313(5793): 1596-1604.

[37]

Verma D, Daniell H. Chloroplast vector systems for biotechnology applications. Plant Physiol, 2007, 145(4): 1129-1143.

[38]

Vries JD, Sousa FL, Bölter B, Soll J, Gould SB. YCF1: a green Tic?. Plant Cell, 2015, 27(7): 1827-1833.

[39]

Wang C, Fang CF, Zhao SD. Salicaceae. Flora Reipublicae Pop Sin, 1984, 20(2): 79-403.

[40]

Wang RJ, Cheng CL, Chang CC, Wu CL, Su TM, Chaw SM. Dynamics and evolution of the inverted repeat-large single copy junctions in the chloroplast genomes of monocots. BMC Evol Biol, 2008 8 1 1

[41]

Wu Z. The new completed genome of purple Willow (Salix purpurea) and conserved chloroplast genome structure of Salicaceae. J Nat Sci, 2015, 1: e49.

[42]

Wyman SK, Jansen RK, Boore JL. Automatic annotation of organellar genomes with DOGMA. Bioinformatics, 2004, 20(17): 3252-3255.

[43]

Yao X, Tang P, Li Z, Li D, Liu Y, Huang H. The first complete chloroplast genome sequences in actinidiaceae: genome structure and comparative analysis. PLoS ONE, 2015 10 6 e0129347

[44]

Yap JYS, Rohner T, Greenfield A, Merwe MVD, Mcpherson H Complete chloroplast genome of the wollemi pine (Wollemia nobilis): structure and evolution. PLoS ONE, 2015 10 6 e0128126

[45]

Zhang G, Guo G, Hu X, Zhang Y, Li Q Deep RNA sequencing at single base-pair resolution reveals high complexity of the rice transcriptome. Genome Res, 2010, 20(5): 646-654.

AI Summary AI Mindmap
PDF

138

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/