Tree growth performance and estimation of wood quality in plantation trials for Maesopsis eminii and Shorea spp.
Lina Karlinasari , Suhada Andini , Descarlo Worabai , Prijanto Pamungkas , Sri Wilarso Budi , Iskandar Z. Siregar
Journal of Forestry Research ›› 2017, Vol. 29 ›› Issue (4) : 1157 -1166.
Tree growth performance and estimation of wood quality in plantation trials for Maesopsis eminii and Shorea spp.
Plantations of tropical species are becoming an increasingly important source of wood. However, it is important that research trials focus not only on tree growth performance, but also on wood quality. The aims of this study were to assess the growth performance of six commercially and ecologically important tree species from separate plantation trials in Indonesia and to determine the relationships between tree growth and wood quality in terms of the dynamic modulus of elasticity (MOE) and wood density. Forty-eight 7-year Maesopsis eminii Engl. and thirty-five 9-year specimens (7 each of 5 Shorea spp.) were selected from two trials. The MOE, based on acoustic velocity, was indirectly measured to evaluate wood stiffness. Tree-growth performance was evaluated, and correlations between growth traits and acoustic velocity as well as density and wood stiffness properties were estimated. The growth performance of M. eminii in terms of tree volume was significantly different in three different categories of growth (i.e. fast, medium, slow). Of the five Shorea spp. studied, Shorea leprosula Miq. had the highest growth rate, as expected since it is known to be a fast-growing Shorea species. Indirect measurement of wood quality by means of non-destructive ultrasonic methods showed a weak negative correlation between tree volume and acoustic velocity and dynamic MOE. Although each fast-growing tree could reach a merchantable size faster than other varieties or species, wood traits of various species tested were not significantly different based on tree growth rate performance. The findings from this study could be used to improve selection criteria in future breeding trials; indirect measurements of the dynamic modulus of elasticity can be used in mass pre-selection of genetic materials, to choose the most-promising material for in-depth evaluation.
Dynamic MOE / Non-destructive test / Selection criteria / Tree growth / Wood quality / Maesopsis eminii / Shorea spp.
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
Dzbeński D, Wiktorski T (2007) Ultrasonic evaluation of mechanical properties of wood in standing trees. In: COST E 53 conference—quality control for wood and wood products, Warsaw, 15–17 Oct 2007 |
| [9] |
|
| [10] |
Faculty of Forestry (2005) Establishment of an ex situ conservation area and domestication of Shorea spp. and Calamus spp. Final Report ASEAN-EU University Network Programme: Conservation and Sustainable Utilization of Plant Genetic in SE-Asia, Bogor Agricultural University, Bogor, Indonesia |
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
Karlinasari L, Surjokusumo S, Hadi YS, Nugroho N (2005) Nondestructive testing on six tropical woods using ultrasonic method. In: Dwianto W (ed) Towards ecology and economy harmonization of tropical forest resources. Proceedings of the 6th international wood science symposium. Research & development Unit for Biomaterials Indonesian Institute of Science, Research Institute for Sustainable Humanosphere, Kyoto University, and Japan Society for the Promotion of Science, Bali, Indonesia, 28–31 Aug 2005, pp 109–116 |
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
Mochan S, Moore J, Conolly T (2009) Using acoustic tools in forestry and the wood supply chain. Forestry Commission Technical Note FCTN018. http://www.forestry.gov.uk/pdf/FCTN018.pdf/$FILE/FCTN018.pdf. Accessed 15 Dec 2015 |
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
Philipson CD (2009) Plant growth analysis of Bornean Dipterocarpaceae seedlings. Ph.D. Dissertation, Faculty of Mathematics and Natural Sciences, University of Zürich, Zürich |
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
Seng OD (1990) Berat jenis dari jenis-jenis kayu Indonesia dan pengertian beratnya kayu untuk keperluan praktek [Specific gravity of Indonesian woods and its significance for practical use). Departemen Kehutanan Pengumuman nr. 13, Pusat Penelitian dan Pengembangan Hasil Hutan, Bogor, Indonesia |
| [33] |
Sheikh Ali IB (2006) A manual of enrichment planting in logged-over forests in Peninsular Malaysia: Malaysian-ITTO Project on sustainable forest management and development in Peninsular Malaysia: PD 185/91 Rev. 2(F) Phase 11, Forestry Department Peninsular Malaysia, Kuala Lumpur, Malaysia |
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
/
| 〈 |
|
〉 |