Group planting of cherry (Prunus avium L.) fosters growth and tree quality is superior to conventional row planting in Germany

Somidh Saha

Journal of Forestry Research ›› 2017, Vol. 29 ›› Issue (4) : 1099 -1110.

PDF
Journal of Forestry Research ›› 2017, Vol. 29 ›› Issue (4) : 1099 -1110. DOI: 10.1007/s11676-017-0506-4
Original Paper

Group planting of cherry (Prunus avium L.) fosters growth and tree quality is superior to conventional row planting in Germany

Author information +
History +
PDF

Abstract

Wild cherry trees produce high-quality timber and provide multiple ecosystem services. However, planting and tending cherry stands in conventional rows are too costly. Therefore, low density group planting was trialled as an alternative to row planting. The mortality, growth, and quality of planted cherry trees were compared between the group and row planting. The influence of neighbourhood competition and light availability on growth and quality was studied. The group and row planting of cherry trees were established at a wind-thrown site in southwestern Germany in the year 2000. In group planting, five cherry seedlings and seven lime seedlings (Tilia cordata Mill.) were planted with a 1 × 1 m spacing. In total, 60 groups were planted per hectare with a 13 × 13 m spacing. In contrast, 3300 seedlings (2475 cherries and 825 limes) were planted per hectare in row planting with a 3 × 1 m spacing. Ten groups and plots (10 × 10 m) were randomly established in group and row planting stand, respectively. The survival rate, stability (height to diameter ratio), diameter, and height growth were significantly higher in group planting. In the group plantings, 40.5% of cherry trees had straight stems and 13.5% had a monopodial crown compared with 15% with straight stems and 2% with a monopodial crown in row planting. The proportion of dominant cherry trees in canopy was 49% in groups compared with 22% in rows. The length of branch free bole was significantly higher in cherries planted in groups than those grown in rows. Intra- and interspecific competition reduced the growth and stability of cherry trees in row planting, but not in group planting. Light availability did not cause any significant effects on growth and quality between group and row planting. This first study on cherry group planting indicates that the survival rate, growth, and tree quality were higher in groups than in rows at this early development stage. The competition by naturally born seedlings was an important reason for the difference in performance between group and row planting. This study will encourage forest practitioners to establish more cherry group planting trials on multiple sites to test the effectiveness of this alternative technique as a tool of regeneration and restoration silviculture.

Keywords

Group planting / Tree growth / Tree quality / Interspecific competition / Intraspecific competition / Photosynthetically active photon flux density / Total site factor

Cite this article

Download citation ▾
Somidh Saha. Group planting of cherry (Prunus avium L.) fosters growth and tree quality is superior to conventional row planting in Germany. Journal of Forestry Research, 2017, 29(4): 1099-1110 DOI:10.1007/s11676-017-0506-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abetz P, Kladtke J. The target tree management system. Forstwiss Centbl, 2002, 121(2): 73-82.

[2]

Abetz P, Ohnemus K. Varification of the future-crop-tree-norms (ZB-norm) for beech in a thinning experiment. Allg Forst Jagdztg, 1999, 170(9): 157-165.

[3]

Ammer C, Dingel C. Investigating the effects of strong competition by inferior tree species on growth and quality of young European oaks. Forstwiss Centbl, 1997, 116(6): 346-358.

[4]

Ammer C, Ziegler C, Knoke T. Assessing intra- and interspecfic competition in thickets of broadleaved tree species. Allg Forst Jagdztg, 2005, 176(5): 85-94.

[5]

Andrzejczyk T, Liziniewicz M, Drozdowski S. Effect of spacing on growth and quality parameters in sessile oak (Quercus petraea) stands in central Poland: results 7 years after planting. Scand J Forest Res, 2015, 30(8): 710-718.

[6]

Ballare CL, Scopel AL, Sanchez RA. Far-red radiation reflected from adjacent leaves—an early signal of competition in plant canopies. Science, 1990, 247(4940): 329-332.

[7]

Binkley D, Campoe OC, Gspaltl M, Forrester DI. Light absorption and use efficiency in forests: why patterns differ for trees and stands. For Ecol Manage, 2013, 288: 5-13.

[8]

Brang P, Bürgi A. Trupppflanzung im Test. Zürcher Wald, 2004, 36(5): 13-16.

[9]

Brang P, Combe J. Extensive Verjüngungsverfahren nach Lothar, 2001 1 Birmensdorf-Zürich: Eidgenössische Forschungsanstalt für Wald, Schnee und Landschaft 1 17

[10]

Canham CD, Denslow JS, Platt WJ, Runkle JR, Spies TA, White PS. Light regimes beneath closed canopies and tree-fall gaps in temperate and tropical forests. Can J For Res, 1990, 20(5): 620-631.

[11]

Canham CD, LePage PT, Coates KD. A neighborhood analysis of canopy tree competition: effects of shading versus crowding. Can J For Res, 2004, 34(4): 778-787.

[12]

Chakraborty T, Saha S, Reif A. Decrease in available soil water storage capacity reduces vitality of young understorey European Beeches (Fagus sylvatica L.): a case study from the Black Forest, Germany. Plants, 2013, 2(4): 676-698.

[13]

Demolis C, François D, Delannoy L. Que sont devenues les plantations de feuillus par points d’appui? Office National des Forêts. Bull Tech, 1997, 32: 27-37.

[14]

Dormann CF, Elith J, Bacher S, Buchmann C, Carl G, Carre G, Marquez JRG, Gruber B, Lafourcade B, Leitao PJ. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography, 2013, 36(1): 27-46.

[15]

Drouineau S, Laroussinie O, Birot Yves, Terrasson D, Formery T, Roman-Amat B. Joint evaluation of storms, forest vulnerability and their restoration, 2000, Joensuu: European Forest Institute 48

[16]

Ehring A, Keller O. Eichen-Trupp-Pflanzung in Baden-Württemberg. AFZ/Der Wald, 2006, 9: 491-494.

[17]

Finzi AC, Canham CD. Sapling growth in response to light and nitrogen availability in a southern New England forest. For Ecol Manage, 2000, 131(1): 153-165.

[18]

Forrester DI. A stand-level light interception model for horizontally and vertically heterogeneous canopies. Ecol Model, 2014, 276: 14-22.

[19]

Gauer J, Aldinger E (2005) Waldökologische Naturräume Deutschlands—Forstliche Wuchsgebiete und Wuchsbezirke, mit Karte 1: 100.000. Freiburg i. Br.: Mitteilungen des Vereins für Forstliche Standortskunde und Forstpflanzenzüchtung, p 1–324

[20]

Gaul T, Stüber V. Der Eichen-Nelder-Verbandsversuch Göhrde. Forst und Holz, 1996, 51: 70-75.

[21]

German Weather Service (2011) Drought conditions in Europe 2011. Offenbach-Germany, German Weather Service, p 1–3. (http://rcccm.dwd.de/EN/ourservices/specialevents/drought/20110510_dryness2011_statement_for_WMO_en.html), Accessed 2 Nov 2016

[22]

Gockel H. Die Trupp-Pflanzung, Ein neues Pflanzschema zur Begründung von Eichenbeständen. Forst und Holz, 1995, 50: 570-575.

[23]

Gockel H, Rock J, Schulte A. Aufforsten mit Eichen-Trupppflanzungen. AFZ/Der Wald, 2001, 5: 223-226.

[24]

Gussone H, Richter A. Eichen-Nester—Zweiter Bericht der Versuche mit Nesterpflanzungen in Norddeutschland. Forst- und Holzwirt, 1994, 49(11): 300-304.

[25]

Hegyi F. A simulation model for managing Jack-pine stands. Stockholm, Sweden. Royal Coll For, 1974, 30: 74-91.

[26]

Hein S (2009) Modelling natural pruning of common ash, sycamore and wild cherry. In: Spiecker H, Hein S, Makkonen-Spiecker K, Thies M (eds), Valuable broadleaved forests in Europe. European Forest Institute Research Report 22. Brill, Leiden, pp 103–122

[27]

Henriksson J. Differential shading of branches or whole trees: survival, growth, and reproduction. Oecologia, 2001, 126(4): 482-486.

[28]

Kint V, Hein S, Campioli M, Muys B. Modelling self-pruning and branch attributes for young Quercus robur L. and Fagus sylvatica L. trees. For Ecol Manage, 2010, 260(11): 2023-2034.

[29]

Knowe SA, Hibbs DE. Stand structure and dynamics of young red alder as affected by planting density. For Ecol Manage, 1996, 82(1–3): 69-85.

[30]

Kohler M, Sohn J, Nagele G, Bauhus J. Can drought tolerance of Norway spruce (Picea abies (L.) Karst.) be increased through thinning?. Eur J For Res, 2010, 129(6): 1109-1118.

[31]

Kraft G. Beiträge zur lehre von den Durchforstungen, Schlagstellungen und Lichtungshieben, 1884, Hannover: Klindworth’s Verlag 1 156

[32]

Kuehne C, Kublin E, Pyttel P, Bauhus J. Growth and form of Quercus robur and Fraxinus excelsior respond distinctly different to initial growing space: results from 24-year-old Nelder experiments. J For Res, 2013, 24(1): 1-14.

[33]

Kuijper DPJ, Cromsigt J, Churski M, Adam B, Jedrzejewska B, Jedrzejewski W. Do ungulates preferentially feed in forest gaps in European temperate forest?. For Ecol Manage, 2009, 258(7): 1528-1535.

[34]

Leder B. Weichlaubhölzer im Eichen- und Buchen-jungbeständen. Forst und Holz, 1996, 51(10): 340-344.

[35]

Liziniewicz M, Andrzejczyk T, Drozdowski S. The effect of birch removal on growth and quality of pedunculate oak in a 21-year-old mixed stand established by row planting. For Ecol Manage, 2016, 364: 165-172.

[36]

McCullagh P, Nelder JA. Generalized linear models, 1989 2 London: Chapman and Hall 1 532

[37]

Nicolini E, Chanson B, Bonne F. Stem growth and epicormic branch formation in understorey beech trees (Fagus sylvatica L.). Ann Bot, 2001, 87(6): 737-750.

[38]

Olano JM, Laskurain NA, Escudero A, De La Cruz M. Why and where do adult trees die in a young secondary temperate forest? The role of neighbourhood. Ann For Sci, 2009 66 1 105

[39]

Panayotov M, Kulakowski D, Tsvetanov N, Krumm F, Barbeito I, Bebi P. Climate extremes during high competition contribute to mortality in unmanaged self-thinning Norway spruce stands in Bulgaria. For Ecol Manage, 2016, 369: 74-88.

[40]

Petersen R. Eichen-Trupp-Pflanzung—erste Ergebnisse einer Versuchsfläche im NFA Neuhaus. Forst und Holz, 2007, 62(3): 19-25.

[41]

Petersen R, Schüller S, Ammer C. Early growth of planted pedunculate oak (Quercus petraea) in response to varying competition by birch (Betula pendula) over 8 years. Forstarchiv, 2009, 80: 208-214.

[42]

Pretzsch H. Forest dynamics, growth, and yield, 2009, Berlin: Springer 1 664

[43]

Pretzsch H, Biber P. Size-symmetric versus size-asymmetric competition and growth partitioning among trees in forest stands along an ecological gradient in central Europe. Can J For Res, 2010, 40(2): 370-384.

[44]

Rebetez M, Mayer H, Dupont O, Schindler D, Gartner K, JrP Kropp, Menzel A. Heat and drought 2003 in Europe: a climate synthesis. Ann For Sci, 2006, 63(6): 569-577.

[45]

Rock J, Gockel H, Schulte A. Vegetationsdiversität in Eichen-Jungwüchsen aus unterschiedlichen Pflanzschemata. Beitr Forstwirtsch u Landsch ökol, 2003, 37: 11-17.

[46]

Rock J, Puettmann KJ, Gockel HA, Schulte A. Spatial aspects of the influence of silver birch (Betula pendula L.) on growth and quality of young oaks (Quercus spp.) in central Germany. Forestry, 2004, 77(3): 235-247.

[47]

Ruhm W. Alternative—Kulturbegründung von Eichenmischwald. Österreichische Forstzeitung, 1997 108 7 29

[48]

Saha S (2012) Development of tree quality, productivity, and diversity in oak (Quercus robur and Q. petraea) stands established by cluster planting. Ph.D. Dissertation, Freiburg: University of Freiburg, p 1–130, (https://freidok.uni-freiburg.de/dnb/download/9960), Accessed 3 July 2017

[49]

Saha S, Kuehne C, Kohnle U, Brang P, Ehring A, Geisel J, Leder B, Muth M, Petersen R, Peter J, Ruhm W, Bauhus J. Growth and quality of young oaks (Quercus robur and Q. petraea) grown in cluster plantings in central Europe: a weighted meta-analysis. For Ecol Manage, 2012, 283: 106-118.

[50]

Saha S, Kuehne C, Bauhus J. Tree species richness and stand productivity in low-density cluster plantings with oaks (Quercus robur L. and Q. petraea (Mattuschka) Liebl.). Forests, 2013, 4(3): 650-665.

[51]

Saha S, Kuehne C, Bauhus J. Intra- and interspecific competition differently influence growth and stem quality of young oaks (Quercus robur L. and Quercus petraea (Mattuschka) Liebl.). Ann For Sci, 2014, 71(3): 381-393.

[52]

Saha S, Kuehne C, Bauhus J. Lessons learned from oak cluster planting trials in central Europe. Can J For Res, 2017, 47: 139-148.

[53]

Savill PS. The silviculture of trees used in British forestry, 2013 2 Oxford: CAB International 1 280

[54]

Scherrer D, Bader MKF, Korner C. Drought-sensitivity ranking of deciduous tree species based on thermal imaging of forest canopies. Agric For Meteorol, 2011, 151(12): 1632-1640.

[55]

Schmidt M, Hanewinkel M, Kandler G, Kublin E, Kohnle U. An inventory-based approach for modeling single-tree storm damage—experiences with the winter storm of 1999 in southwestern Germany. Can J For Res, 2010, 40(8): 1636-1652.

[56]

Schraml U, Volz KR (2009) Do species matter? Valuable broadleaves as an object of public perception and policy—European Forest Institute Report 22. Leiden: S. Brill. Publishers, p 213–236

[57]

Schutz JP, Gotz M, Schmid W, Mandallaz D. Vulnerability of spruce (Picea abies) and beech (Fagus sylvatica) forest stands to storms and consequences for silviculture. Eur J For Res, 2006, 125(3): 291-302.

[58]

Skiadaresis G, Saha S, Bauhus J. Oak group planting produces a higher number of future crop trees, with better spatial distribution, than row planting. Forests, 2016, 7: 289-304.

[59]

Sokal RR, Rolhf FJ. Biometry, 1995 3 New York: W. H. Freeman 1 880

[60]

Spellmann H, Baderschneider A. Erste Auswertung eines Traubeneichen-Pflanzverbands-und Sortimentsversuches im Forstamt Hardegsen/Solling. Forst und Holz, 1988, 19: 447-450.

[61]

Spiecker H. Controlling the diameter growth and the natural pruning of Sessile and Pedunculate oaks (Quercus petraea (Matt.) Liebl. and Quercus robur L.). Schriftenreihe der Landesforstverwaltung Baden-Württemberg, 1991, 72: 1-135.

[62]

Thies M, Hein S, Spiecker H (2009) Results of a questionnaire on management of valuable broadleaved forests in Europe—European Forest Institute Report 22. Leiden: S. Brill. Publishers, p 27–42

[63]

United Nations Economic Commission for Europe (2000) Effects of the december 1999 storms on European timber markets. Geneva: Food and Agricultural Association, p 1–17, (https://www.unece.org/fileadmin/DAM/timber/docs/rev-00/02.pdf), Accessed 3 July 2017

[64]

United States Forest Service (2011) Field guides, methods and procedures. Phase 2 field guide—crowns: measurements and sampling-version 5.1, Washington DC: The United States Forest Service, p 1–310. (https://www.fia.fs.fed.us/library/field-guides-methods-proc/docs/Complete%20FG%20Document/core_ver_5-1_10_2011.pdf), Accessed 3 July 2017

[65]

van Hees AFM. Growth and morphology of pedunculate oak (Quercus robur L) and beech (Fagus sylvatica L) seedlings in relation to shading and drought. Ann For Sci, 1997, 54(1): 9-18.

[66]

Loewe V, Gonzalez M, Balzarini M. Wild cherry tree (Prunus avium L.) growth in pure and mixed plantations in South America. For Ecol Manage, 2013, 306: 31-41.

[67]

von Lüpke B. Einfluss der Konkurrenz von Weichlaubholz auf das Wachstum junger Traubeneichen. Forst und Holz, 1991, 46: 166-171.

[68]

von Lüpke B. Silvicultural methods of oak regeneration with special respect to shade tolerant mixed species. For Ecol Manage, 1998, 106(1): 19-26.

[69]

Wagner S, Roeker B. Birkenanflug in Stieleichenkulturen. Untersuchungen zur Dynamik der Konkurrenz über 5 Vegetationsperioden. Forst und Holz, 2000, 55: 18-22.

[70]

Waring RH, Schlesinger WH. Forest ecosystems: concepts and management, 1985, Orlando-Florida: Academic Press Inc 1 340

AI Summary AI Mindmap
PDF

147

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/