Non-aerated liquid culture promotes shoot organogenesis in Eucalyptus globulus Labill

T. D. Salla , C. dos S. Silva , K. L. de G. Machado , L. V. Astarita , E. R. Santarém

Journal of Forestry Research ›› 2017, Vol. 29 ›› Issue (3) : 623 -629.

PDF
Journal of Forestry Research ›› 2017, Vol. 29 ›› Issue (3) : 623 -629. DOI: 10.1007/s11676-017-0485-5
Original Paper

Non-aerated liquid culture promotes shoot organogenesis in Eucalyptus globulus Labill

Author information +
History +
PDF

Abstract

Eucalyptus is very recalcitrant to in vitro culture. In this research, an efficient shoot organogenesis system was developed using 60-day-old plants of Eucalyptus globulus grown in vitro and non-aerated liquid medium to improve shoot proliferation. Cultures were initiated with hypocotyls and leaf segments from plantlets cultivated on semisolid ½ MS modified medium supplemented with 4.44 µM 6-Benzyladenine (BA) and 16.1 µM 1-Naphthaleneacetic acid (NAA). Calli were transferred to shoot induction medium, with either 0.5 or 2.7 µM NAA. Shoot multiplication was carried out on 4.44 µM BA + 0.5 µM NAA medium, and semisolid and non-aerated liquid systems were compared for improving shoot proliferation. Rooting of adventitious shoots was evaluated on medium containing NAA or Indole-3-butyric acid -IBA (5 and 16 µM). Callogenesis was obtained from both types of explants, although shoot formation was only obtained from leaf-derived calli. Shoot proliferation on 4.44 µM BA + 0.5 µM NAA resulted in the most shoots/callus. Non-aerated liquid medium was more efficient in promoting shoot multiplication (53.5 shoots/callus) than was semisolid medium (28.5 shoots/callus). Levels of phenolic compounds were significantly reduced in the shoots cultivated in liquid medium. Efficient rooting (76%) was obtained using 16 µM IBA.

Keywords

Adventitious shoots / Callus / Liquid medium / Micropropagation / Phenolic compounds / Rooting

Cite this article

Download citation ▾
T. D. Salla, C. dos S. Silva, K. L. de G. Machado, L. V. Astarita, E. R. Santarém. Non-aerated liquid culture promotes shoot organogenesis in Eucalyptus globulus Labill. Journal of Forestry Research, 2017, 29(3): 623-629 DOI:10.1007/s11676-017-0485-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abril N, Gion J-M, Kerner R, Müller-Starck G, Navarro Cerrillo RM, Plomion C Proteomics research on forest trees, the most recalcitrant and orphan plant species. Phytochemistry, 2011, 72: 1219-1242.

[2]

Aggarwal D, Kumar A, Reddy SM. Shoot organogenesis in elite clones of Eucalyptus tereticornis. Plant Cell, Tissue Organ Cult, 2010, 102: 45-52.

[3]

Ahmad I, Hussain T, Ashraf I, Nafees M, Maryam Rafay M Lethal effects of secondary metabolites on plant tissue culture. Am Eurasian J Agric Environ Sci, 2013, 13(4): 539-547.

[4]

Babaei N, Abdullah NAP, Saleh G, Abdullah TL. Control of contamination and explant browning in Curculigo latifolia in vitro cultures. J Med Plants Res, 2013, 7(8): 448-454.

[5]

Bandyopadhyay S, Cane K, Rasmussen G, Hamill JD. Efficient plant regeneration from seedling explants of two commercially important temperate eucalypt species–Eucalyptus nitens and E. globulus. Plant Sci, 1999, 140: 189-198.

[6]

Brondani GE, Baccarin FJB, Ondas HWW, Stape JL, Gonçalves AN, Almeida M. Low temperature, IBA concentrations and optimal time for adventitious rooting of Eucalyptus benthamii mini-cuttings. J J For Res, 2012, 23(4): 583-592.

[7]

Bunn E, Senaratna T, Sivasithamparam K, Dixon KN. In vitro propagation of Eucalyptus phylacis L. Johnson and K. Hill, a critically endangered relict from Western Australia. In Vitro Cell Dev Biol Plant, 2005, 41: 812-815.

[8]

Cuenca B, Sánchez C, Aldrey A Micropropagation of axillary shoots of hybrid chestnut (Castanea sativa × C. crenata) in liquid medium in a continuous immersion system. Plant Cell, Tissue Organ Cult, 2017

[9]

Dibax R, Eisfeld CL, Cuquel FL, Koehler H, Quoirin M. Plant regeneration from cotyledonary explants of Eucalyptus camaldulensis. Sci Agric, 2005, 624: 406-412.

[10]

Dibax R, Deschamps C, Bespalhok Filho JC, Vieira E, Molinari C, Campos D Organogenesis and Agrobacterium tumefaciens-mediated transformation of Eucalyptus saligna with P5CS gene. Biol Plant, 2010, 54: 6-12.

[11]

Fett-Neto AG, Fett JP, Goulart LWV, Pasquali G, Termignoni RR, Ferreira AG. Distinct effects of auxin and light on adventitious root development in Eucalyptus saligna and Eucalyptus globulus. Tree Physiol, 2001, 21: 457-464.

[12]

González R, Ríos D, Avilés F, Sánchez-Olate M. Multiplicación in vitro de Eucalyptus globulus mediante sistema de inmersión temporal. Bosque, 2011, 32(2): 147-154.

[13]

Hajari E, Watt MP, Mycock DJ, McAlister B. Plant regeneration from induced callus of improved Eucalyptus clones. S Afr J Bot, 2006, 72: 195-201.

[14]

Jones AMP, Saxena PK. Inhibition of phenylpropanoid biosynthesis in Artemisia annua L.: a novel approach to reduce oxidative browning in plant tissue culture. PLoS ONE, 2013 8 10 e76802

[15]

Krishna H, Sairam RK, Singh SK, Patel VB, Sharma RR et al (2008) Mango explant browning: effect of ontogenic age, mycorrhization and pre-treatments. Sci Hortic 118:132–138

[16]

Kumar GP, Subiramani S, Govindarajan S, Sadasivam V, Manickam V, Mogilicherla K Evaluation of different carbon sources for high frequency callus culture with reduced phenolic secretion in cotton (Gossypium hirsutum L.) cv. SVPR-2. Plant Biotechnol Rep, 2015, 7: 72-80.

[17]

Lopes da Silva AL, Gollo AL, Brondani GE, Horbach MA, Oliveira LS, Machado MP Micropropagation of Eucalyptus saligna SM. from cotyledonary nodes. Pak J Bot, 2015, 47: 311-318.

[18]

Mabona U, Van Vuuren SF. Southern African medicinal plants used to treat skin diseases. S Afr J Bot, 2013, 87: 175-193.

[19]

Marbun CLM, Toruan-Mathiusa N, Reflini Utomo C, Liwang T. Micropropagation of embryogenic callus of oil palm (Elaeis guineensis Jacq.) using temporary immersion system. Proc Chem, 2015, 14: 122-129.

[20]

Matsunaga E, Nanto K, Oishi M, Ebinuma H, Morishita Y, Sakurai N Agrobacterium-mediated transformation of Eucalyptus globulus using explants with shoot apex with introduction of bacterial choline oxidase gene to enhance salt tolerance. Plant Cell Rep, 2012, 31: 225-235.

[21]

Murashige T, Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant, 1962, 15: 473-497.

[22]

Navroski MC, Reiniger LRS, Araújo MM, Curti AR, Pereira MO. In vitro establishment and multiplication of genotypes of Eucalyptus dunnii Maiden. Cerne, 2014, 20: 139-146.

[23]

Nugent G, Chandler SF, Whiteman P, Stevenson TW. Somatic embryogenesis in Eucalyptus globulus. Plant Cell, Tissue Organ Cult, 2001, 67: 85-88.

[24]

Oliveira C, Degenhardt-Goldbach J, Bettencourt GMF, Amano E, Franciscon L, Quoirin M. Micropropagation of Eucalyptus grandis x E. urophylla AEC 224 clone. J For Res, 2016, 27: 1-11.

[25]

Quiala E, Canal M-J, Meijón M, Rodríguez R, Chávez M, Valledor L Morphological and physiological responses of proliferating shoots of teak to temporary immersion and BA treatments. Plant Cell, Tissue Organ Cult, 2012, 109: 223-234.

[26]

Quoirin M, Quisen R (2006) Advances in genetic transformation of Eucalyptus species. In: Franche C (ed) Molecular biology tropical plant research signpost Kerala, pp 41–56

[27]

Ramírez-Mosqueda MA, Iglesias-Andreu LG. Evaluation of different temporary immersion systems (BIT®, BIG, and RITA®) in the micropropagation of Vanilla planifolia Jacks. In Vitro Cell Dev Biol Plant, 2016, 52: 154-160.

[28]

Rathore JS, Rai MK, Phulwaria M, Shekhawat NS. A liquid culture system for improved micropropagation of mature Acacia nilotica (L.) Del. ssp. indica and ex vitro rooting. Proc Natl Acad Sci, 2014, 84: 193-200.

[29]

Resquin F, Barrichelo LEG, Silva Júnior FG, Brito JO, Sansigolo CA. Wood quality for kraft pulping of Eucalyptus globulus origins planted in Uruguay. Sci For, 2006, 72: 57-66.

[30]

Salla TD, da Silva TR, Astarita LV, Santarém ER. Streptomyces rhizobacteria modulate the secondary metabolism of Eucalyptus plants. Plant Physiol Biochem, 2014, 85: 14-20.

[31]

Sávio LE, Astarita LV, Santarém ER. Secondary metabolism in micropropagated Hypericum perforatum L. grown in non-aerated liquid medium. Plant Cell, Tissue Organ Cult, 2012, 108: 465-472.

[32]

Schwambach J, Fadanelli C, Fett-Neto A (2005) Mineral nutrition and adventitious rooting in microcuttings of Eucalyptus globulus. Tree Physiol 25:487–494

[33]

Zuraida AR, Nurul Shahnadz AH, Harteeni A, Roowi S, Che Radziah CMZ, Sreeramanan S. A novel approach for rapid micropropagation of maspine pineapple (Ananas comosus L.) shoots using liquid shake culture system. Afr J Biotech, 2011, 10: 3859-3866.

AI Summary AI Mindmap
PDF

128

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/