Assessment of benefits and risks of growing Jatropha (Jatropha curcas) as a biofuel crop in sub-Saharan Africa: a contribution to agronomic and socio-economic policies

Keotshephile Kashe , Donald L. Kgathi , Mike Murray-Hudson , Kelebogile B. Mfundisi

Journal of Forestry Research ›› 2017, Vol. 29 ›› Issue (1) : 1 -12.

PDF
Journal of Forestry Research ›› 2017, Vol. 29 ›› Issue (1) : 1 -12. DOI: 10.1007/s11676-017-0460-1
Review Article

Assessment of benefits and risks of growing Jatropha (Jatropha curcas) as a biofuel crop in sub-Saharan Africa: a contribution to agronomic and socio-economic policies

Author information +
History +
PDF

Abstract

In sub-Saharan Africa (SSA), the main goals behind the development of a biofuel industry are employment creation and income generation. Jatropha (Jatropha curcas L.) has emerged as a candidate for biodiesel production. It is a non-edible oil producing, drought-resistant plant that can be grown on marginal land with limited water and low soil fertility. However, these are also attributes that typify weedy and invasive plant species. Adding to these concerns are the general questioning of whether biofuel production will reduce Greenhouse gas (GHG) emissions globally. Currently, there is limited information on the potential invasiveness of many biofuel crops, and in particular, the potential risks of cultivating Jatropha. This paper aims to assess the benefits and risks, especially risks, of growing Jatropha for biodiesel production. Jatropha should be screened through a science-based risk-assessment procedure to predict the risk of becoming invasive before it is released for large-scale commercial cultivation. The net GHG savings can be achieved through the cultivation of Jatropha, considering two main factors: no land-use change and crop management without chemical fertilization.

Keywords

Biofuel / Invasive / Jatropha / Risk

Cite this article

Download citation ▾
Keotshephile Kashe, Donald L. Kgathi, Mike Murray-Hudson, Kelebogile B. Mfundisi. Assessment of benefits and risks of growing Jatropha (Jatropha curcas) as a biofuel crop in sub-Saharan Africa: a contribution to agronomic and socio-economic policies. Journal of Forestry Research, 2017, 29(1): 1-12 DOI:10.1007/s11676-017-0460-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abdelgadir HA, van Staden J. Ethnobotany, ethnopharmacology and toxicity of Jatropha curcas L. (Euphorbiaceae): a review. S Afr J Bot, 2013, 88: 204-218.

[2]

Abdu-Aguye I, Sannusi A, Alafiya-Tayo RA, Bhusnurmath SR. Acute toxcity studies with Jatropha curcas L. Hum Toxicol, 1986, 5(4): 269-274.

[3]

Achten WMJ, Verchot L, Franken Y, Mathijs E, Singh V, Aerts R, Muys B. Jatropha bio-diesel production and use. Biomass Bioenergy, 2008, 32(12): 1063-1084.

[4]

Achten WMJ, Nielsen LR, Aerts R, Lengkeek AG, Kjaer ED, Trabucco A, Hansen JK, Maes WH, Gradual L, Akinnifesi FK, Muys B. Towards domestication of Jatropha curcas. Biofuels, 2010, 1(1): 91-107.

[5]

Achten WMJ, Trabucco A, Maes WH, Verchot LV, Aerts R, Mathijs E, Vantomme P, Singh VP, Muys B. Global greenhouse gas implications of land conversion to biofuel crop cultivation in arid and semi-arid lands–lessons learned from Jatropha. J Arid Environ, 2013, 98: 135-145.

[6]

Achten WMJ, Dillen K, Trabucco A, Verbist B, Messemaker L, Muys B, Mathijs E. The economics and greenhouse gas balance of land conversion to Jatropha: the case of Tanzania. Glob Change Bioenergy, 2015, 7(2): 302-315.

[7]

ADB (African Development Bank) (2012) African Economic Outlook 2012. Joint publication of the ADB, Development Centre of the Organization for Economic Cooperation and Development, United Nations Development Programme and United Nations Economic Commission for Africa

[8]

Ambasta SP. The useful plants of India, 1994, New Delhi: CSIR.

[9]

Ariza-Montobbio P, Lele S. Jatropha plantations for biodiesel in Tamil Nadu, India: viability, livelihood trade-offs, and latent conflict. Ecol Econ, 2010, 70(2): 189-195.

[10]

Azam MM, Waris A, Nahar NM. Prospects and potential of fatty acid methyl esters of some non-traditional seed oils for use as biodiesel in India. Biomass Bioenergy, 2005, 29(4): 293-302.

[11]

Barney JN. Bioenergy and invasive plants: quantifying and mitigating future risks. Invasive Plant Sci Manag, 2014, 7(2): 199-209.

[12]

Barney J, DiTomaso J. Non-native species and bioenergy: are we cultivating the next invader?. Bioscience, 2008, 58(1): 64-70.

[13]

Barney JN, DiTomaso JM. Global climate niche estimates for bioenergy crops and invasive species of agronomic origin: potential problems and opportunities. PLoS ONE, 2011

[14]

Basili M, Fontini F. Biofuel from Jatropha curcas: environmental sustainability and option value. Ecol Econ, 2012, 78: 1-8.

[15]

Becker K, Makkar HPS. Effects of phorbolesters in carp (Cyprinus carpio L.). Vet Hum Toxicol, 1998, 40(2): 82-86.

[16]

Behera SK, Srivastava P, Tripathi R, Singh JP, Singh N. Evaluation of plant performance of Jatropha curcas L. under different agro-practices for optimizing biomass—a case study. Biomass Bioenergy, 2010, 34(1): 30-41.

[17]

Berchmans HJ, Hirata S. Biodiesel production from crude Jatropha curcas L. seed oil with a high content of free fatty acids. Bioresour Technol, 2008, 99(6): 1716-1721.

[18]

Biswas S, Kaushik N, Srikanth G (2006) Biodiesel: technology and business opportunities—an insight. In: Singh B, Swaminathan R, Ponraj V (eds) Proceedings of the biodiesel conference toward energy independence—focus of Jatropha. Rashtrapati Bhawan, New Delhi, India, pp. 303–330

[19]

Biswas KP, Pohit S, Kumar R. Biodiesel from Jatropha: can India meet the 20% blending target?. Energy Policy, 2010, 38(3): 1477-1484.

[20]

Blanchard R, Richardson DM, O’Farrell PJ, von Maltitz GP. Biofuels and biodiversity in South Africa. S Afr J Sci, 2011, 107(5–6): 1-8.

[21]

Brittaine R, Lutaladio N (2010) Jatropha: a smallholder bioenergy crop—the potential for pro-poor development. In: Integrated crop management, vol 8. Food and Agriculture Organization of the United Nations, Rome

[22]

Buddenhagen CE, Chimera C, Clifford P. Assessing biofuel crop invasiveness: a case study. PLoS ONE, 2009

[23]

Burkill HM. The useful plants of west tropical Africa, 1994, Kew: Royal Botanical Gardens.

[24]

Burns JH, Pardini EA, Michele R, Schutzenhofer MR, Chung YA, Seidler KJ, Knight TM. Greater sexual reproduction contributes to differences in demography of invasive plants and their noninvasive relatives. Ecology, 2013, 94(5): 995-1004.

[25]

Charles D. Corn-based ethanol flunks key test. Science, 2009 324 5927 587

[26]

Clout MN, Williams PA. Invasive species management: a handbook of principles and techniques, 2009, Oxford: Oxford University Press.

[27]

Crutzen PJ, Mosier AR, Smith KA, Winiwarter W. N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels. Atmos Chem Phys, 2008, 8: 389-395.

[28]

Hannan-Jones M, Csurhes, S (2008) Pest plant risk assessment physic nut, PR 08–3681. Department of Primary Industries and Fisheries, Queensland Government, Queensland, Australia

[29]

Das S, Pries JA, Schweitzer C. Modelling regional scale biofuel scenarios—a case study for India. Glob Change Bioenergy, 2012, 4(2): 176-192.

[30]

Debnath M, Bisen PS. Jatropha curcas L. a multipurpose stress resistant plant with a potential for ethnomedicine and renewable energy. Curr Pharm Biotechnol, 2008, 9(4): 288-306.

[31]

Deore AC, Johnson TS. High-frequency plant regeneration from leaf-disc cultures of Jatropha curcas L.: an important biodiesel plant. Plant Biotechnol Rep, 2008, 2: 7-11.

[32]

DiTomaso JM, Barney JN, Fox AM (2007) Biofuel feedstocks: the risk of future invasions. Council for Agricultural Science and Technology Commentary QTA 2007–1, Ames, IA, p 8

[33]

Dornburg V, van Vuuren D, van de Ven G, Langeveld H, Meeusen M, Banse M, van Oorschot M, Ros J, van den Born GJ, Aiking H, Londo M, Mozaffarian H, Verweij P, Lysen E, Faaij A. Bioenergy revisited: key factors in global potentials of bioenergy. Energy Environ Sci, 2010, 3: 258-267.

[34]

Edrisi SA, Dubey RK, Tripathi V, Bakshi M, Srivastava P, Jamil S, Singh HB, Singh N, Abhilash PC. Jatropha curcas L.: a crucified plant waiting for resurgence. Renew Sustain Energy Rev, 2015, 41: 855-862.

[35]

ENDA (Environmental Development Action) (2008) Biofuels development in Africa: illusion or sustainable alternative? http://www.compete-bioafrica.net/publications/publ/ENDA%20Biofules%20Africa.pdf. Accessed 25 Feb 2016

[36]

Enweremadu CC, Alamu OJ. Development and characterization of biodiesel from shea nut butter. Int Agrophys, 2010, 24: 29-34.

[37]

Escobar JC, Lora ES, Osvaldo J, Venturini OJ, Edgar E, Yáũez EE, Edgar F, Castillo EF, Almazan O. Biofuels: environment, technology and food security. Renew Sustain Energy Rev, 2009, 13: 1275-1287.

[38]

Euler H, Gorriz D (2004) Case study Jatropha Curcas: Global facilitation unit for underutilized species. Deutsche Gesellschaft fúr Technische Zusammenarbeit (GTZ), Frankfurt, http://www.underutilized-species.org/Documents/PUBLICATIONS/jatropha_curcas_india.pdf. Accessed 22 Mar 2016

[39]

Faaij APC, Domac J. Emerging international bio-energy markets and opportunities for socio-economic development. Energy Sustain Dev, 2006, 10(1): 7-19.

[40]

Fairless D. Biofuel: the little shrub that could–maybe. Nature, 2007, 449: 652-655.

[41]

Fargione J, Hill J, Tilman D, Polasky S, Hawthorne P. Land clearing and the biofuel carbon debt. Science, 2008, 319(5867): 1235-1238.

[42]

Fletcher RJ Jr, Robertson BA, Evans J, Doran PJ, Alavalapati JRR, Schemske DW. Biodiversity conservation in the era of biofuels: risks and opportunities. Front Ecol Environ, 2011, 9(3): 161-168.

[43]

Flory SL, Lorentz KA, Gordon DR, Sollenberger LE. Experimental approaches for evaluating the invasion risk of biofuel crops. Environ Res Lett, 2012

[44]

Foidl N, Foildl G, Sanchez M, Mittelbach M, Hackel S. Jatropha curcas L. as a source for the production of biofuel in Nicaragua. Bioresour Technol, 1996, 58(1): 77-82.

[45]

Francis G, Edinger R, Becker K. A concept for simultaneous wasteland reclamation, fuel production, and socio-economic development in degraded areas in India: need, potential and perspectives of Jatropha plantations. Nat Resour Forum, 2005, 29(1): 12-24.

[46]

Gallagher E (2008) Review of the indirect effects of biofuels production. Renewable Fuels Agency. http://www.renewablefuelsagency.org. Accessed 12 Dec 2015

[47]

Garg KK, Karlberg L, Wani SP, Berndes G. Jatropha production on wastelands in India: opportunities and trade-offs for soil and water management at the watershed scale. Biofuel Bioprod Biorefin, 2011, 5: 410-430.

[48]

Gasparatos A, von Maltitz GP, Johnson FX, Lee L, Mathai M, de Oliveira JAP, Willis KJ. Biofuels in sub-Sahara Africa: drivers, impacts and priority policy areas. Renew Sustain Energy Rev, 2015, 45: 879-901.

[49]

GEXSI (Global Exchange for Social Investment) (2008) Global Market Study on Jatropha. Final report of The GEXSI, prepared for the World Wide Fund for Nature (WWF), London/Berlin

[50]

GISP (The Global Invasive Species Programme) (2007) Assessing the Risk of Invasive Alien Species Promoted for Biofuels. GISP

[51]

GISP (The Global Invasive Species Programme) (2008) Biofuels run the risk of becoming invasive species. http://www.gisp.org/whatsnew/docs/biofuels.pdf. Accessed 15 Mar 2016

[52]

Gour VK (2006) Production and practices including post-harvest management of Jatropha curcas. In: Singh B, Swaminathan R, Ponraj V (eds) Biodiesel conference towards energy independence—focus on Jatropha, Hyderabad, June 9–10, 2006

[53]

Gübitz GM, Mittelbach M, Trabi M. Exploitation of the tropical oil seed plant Jatropha curcas L. Bioresour Technol, 1999, 67(1): 73-82.

[54]

Heller J. Physic nut Jatropha curcas L promoting the conservation and use of underutilized and neglected crops, 1996 1 Rome: International Plant Genetics and Crop Plant Research Institute, Gartersleben (IPGRI).

[55]

Henning R (2004) Jatropha curcas L. in Africa. Global Facilitation Unit for Underutilized Species, Rome

[56]

Holle BV, Simberloff D. Ecological resistance to biological invasion overwhelmed by propagule pressure. Ecology, 2005, 86(12): 3212-3218.

[57]

Hulme PE. Post-dispersal seed predation: consequences for plant demography and evolution. Perspect Plant Ecol, 1998, 1(1): 32-46.

[58]

IEA (International Energy Agency) (2006). Key world energy statistics. Paris, France. https://www.iea.org/publications/freepublications/publication/KeyWorld2016.pdf. Accessed 15 April 2016

[59]

IEA (International Energy Agency) (2014) World Energy Outlook 2014 Special Report: Africa Energy Outlook. http://www.worldenergyoutlook.org/. Accessed 15 April 2016

[60]

Inafuku-Teramoto S, Mazereku M, Coetzee T, Gwafila C, Lekgari AL, Ketumile D, Fukuzawa Y, Yabuta S, Masukujane M, George DGM, Chite SM, Ueno M, Kawamitsu Y, Akashi K. Production approaches to establish effective cultivation methods for Jatropha (Jatropha curcas L.) under cold and semi-arid climate conditions. Int J Agron Plant Prod, 2013, 4: 3804-3815.

[61]

IPCC (Intergovernmental Panel on Climate Change) (2006) N2O emissions from managed soils and CO2 emissions from lime and urea application. In: Eggleston HS, Buendia L, Miwa K, Ngara T, Tanabe K (eds) ‘IPCC Guidelines for National Greenhouse Gas Inventories: vol 4: agriculture, forestry and other land use’, pp. 1–54. (The Institute for Global Environmental Strategies: Hayama, Japan) http://www.ipcc-nggip.iges.or.jp/public/2006gl/vol2004.htm[Verified 1 November 2010]

[62]

IUCN (International Union for Conservation of Nature). Guidelines on biofuels and invasive species, 2009, Gland: IUCN.

[63]

Jain SK. Dictionary of Indian folk medicine and ethnobotany, 1991, New Dehli: Deep Publications.

[64]

Jelbert K, Stott I, McDonald RA, Hodgson D. Invasiveness of plants is predicted by size and fecundity in the native range. Ecol Evol, 2015, 5(10): 1933-1943.

[65]

Jones N, Miller JH. Jatropha curcas L: a multipurpose species for problematic sites, 1992, Washington DC: The World Bank.

[66]

Jongschaap R, Corré W, Bindraban P, Brandenburg W (2007) Claims and facts on Jatropha curcas L. Global Jatropha curcas evaluation, breeding and propagation programme. Plant Research International BV, Wageningen

[67]

Jørgensen U. Benefits versus risks of growing biofuel crops: the case of Miscanthus. Curr Opin Environ Sustain, 2011, 3(1–2): 24-30.

[68]

Kaushik N, Kumar K, Kumar S, Kaushik N, Roy S. Genetic variability and divergence studies in seed traits and oil content of Jatropha (Jatropha curcas L.) accessions. Biomass Bioenergy, 2007, 31(7): 497-502.

[69]

Kelly CK. Seed size in tropical trees: a comparative study of factors affecting seed size in Peruvian angiosperms. Oecologia, 1995, 102(3): 377-388.

[70]

Kgathi DL, Mfundisi KB, Mmopelwa G, Mosepele K. Potential impacts of biofuel development on food security in Botswana: a contribution to energy policy. Energy Policy, 2012, 43: 70-79.

[71]

Kheira AA, Atta NMM. Response of Jatropha curcas L. to water deficits: yield, water use efficiency and oilseed characteristics. Biomass Bioenergy, 2009, 33(10): 1343-1350.

[72]

King AJ, He WJA, Freudenberger M, Ramiaramanana D, Graham IA. Potential of Jatropha curcas as a source of renewable oil and animal feed. J Exp Bot, 2009, 60(10): 2897-2905.

[73]

Koçar G, Civaş N. An overview of biofuels from energy crops: current status and future prospects. Renew Sustain Energy Rev, 2013, 28: 900-916.

[74]

Kritana P, Gheewala SH (2006) Energy and greenhouse gas implications of biodiesel production from Jatropha curcas L. Paper presented at the second joint international conference on sustainable energy and environment, Bangkok, 21–23 November 2006

[75]

Kumar A, Sharma S. An evaluation of multipurpose oil seed crop for industrial uses (Jatropha curcas L.): a review. Ind Crop Prod, 2008, 28(1): 1-10.

[76]

Kumar S, Singh J, Nanoti SM, Garg MO. A comprehensive life cycle assessment (LCA) of Jatropha biodiesel production in India. Bioresour Technol, 2012, 110: 723-729.

[77]

Larson ED. A review of life-cycle analysis studies on liquid biofuel systems for the transport sector. Energy Sustain Dev, 2006, 10(2): 109-126.

[78]

Lewandowski I, Scurlock JMO, Lindvall E, Chistou M. The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe. Biomass Bioenergy, 2003, 25(4): 335-361.

[79]

Lewis KC, Read D, Porter RD. Global approaches to addressing biofuel-related invasive species risks and incorporation into U.S. laws and policies. Ecol Monogr, 2014, 84(2): 171-201.

[80]

Liang Y, Chen H, Tang M, Yang P, Shen S. Responses of Jatropha curcas seedlings to cold stress: photosynthesis related proteins and chlorophyll fluorescence characteristics. Physiol Plant, 2007, 131(3): 508-517.

[81]

Lioglier HA. Medicinal plants of Puerto Rico and the Caribbean, 1990, San Juan: Iberoamericana, Editions Inc.

[82]

Lockwood J, Cassey P, Blackburn T. The role of propagule pressure in explaining species invasions. Trends Ecol Evol, 2005, 20(5): 223-228.

[83]

Loos TK (2008) Socio-economic impact of a Jatropha-project on smallholder farmers in Mpanda. Master Thesis, University of Hohenheim, Hohenheim

[84]

Lopez O, Foidl G, Foidl N (1997) Production of biogas from Jatropha curcus fruit shells. In: Gübitz GM, Mittelbach M, Trabi MM (eds) Proceedings of the Symposium on Jatropha 97, 23–27 February 1997, Graz, Austria

[85]

Low T, Booth C, Sheppard A. Weedy biofuels: what can be done?. Curr Opin Environ Sustain, 2011, 3(1–2): 55-59.

[86]

Maciel FM, Laberty MA, Oliveira ND, Felix SP, Soares AMD, Verícimo MA, Machado OLT. A new 2S albumin from Jatropha curcas L. and assessment of its allergenic properties. Peptides, 2009, 30: 2103-2107.

[87]

Mack RN, Simberloff D, Lonsdale WM, Evans H, Clout M, Bazzaz F. Biotic invasions: causes, epidemiology, global consequences and control. Ecol Appl, 2000, 10(3): 689-710.

[88]

Makkar HPS, Becker K. Jatropha curcas, a promising crop for the generation of biodiesel and value-added coproducts. Eur J Lipid Sci Technol, 2009, 111(8): 773-787.

[89]

Makkar HPS, Becker K, Schmook B. Edible provenances of Jatropha curcas from Quintana Roo state of Mexico and effect of roasting on antinutrient and toxic factors in seeds. Plant Food Hum Nutr, 1998, 52(1): 31-36.

[90]

Maltsoglou I, Koizumi T, Felix E. The status of bioenergy development in developing countries. Glob Food Secur, 2013, 2(2): 104-109.

[91]

Mariappan N, Srimathi P, Sundaramoorthi L, Sudhakar K. Effect of growing media on seed germination and vigor in biofuel tree species. J For Res, 2014, 25(4): 909-913.

[92]

Martínez-Herrera J, Siddhuraju P, Francis G, Davila-Ortiz G, Becker K. Chemical composition, toxic/antimetabolic constituents, and effects of different treatments on their levels, in four provenances of Jatropha curcas L. from Mexico. Food Chem, 2006, 96(1): 80-899.

[93]

Misra M, Misra AN. Jatropha: the biodiesel plant biology, tissue culture and genetic transformation–a review. Int J Pure Appl Sci Technol, 2010, 1(1): 1-24.

[94]

Mitchell A (2008) The implications of smallholder cultivation of the biofuel crop, Jatropha curcas, for local food security and socio-economic development in northern Tanzania. Masters Thesis, University of London (England), Department of Anthropology and Ecology of Development

[95]

Mitchell D. Biofuels in Africa: opportunities, prospects, and challenges, 2011, Washington, DC: World Bank.

[96]

Mohr A, Raman S. Lessons from first generation biofuels and implications for the sustainability appraisal of second generation biofuels. Energy Policy, 2013, 63: 114-122.

[97]

Mulugetta Y. Evaluating the economics of biodiesel in Africa. Renew Sustain Energy Rev, 2008, 13(6–7): 1592-1598.

[98]

Muys B, Norgrove L, Alamirew T, Birech R, Chirinian E, Delelegn Y, Ehrensperger A, Ellison CA, Feto A, Freyer B, Gevaert J, Gmünder S, Jongschaap REE, Kaufmann M, Keane J, Kenis M, Kiteme B, Langat J, Lyimo R, Moraa V, Muchugu J, Negussie A, Ouko C, Rouamba MW, Soto I, Wörgetter M, Zah R, Zetina R. Integrating mitigation and adaptation into development: the case of Jatropha curcas in sub-Saharan Africa. GCB Bioenergy, 2013, 6: 169-171.

[99]

Naik S, Goud VV, Rout PK, Dalai AK. Production of first and second generation biofuels: a comprehensive review. Renew Sustain Energy Rev, 2010, 14(2): 578-597.

[100]

Ndong R, Montrejaud-Vignoles M, Saint Girons O, Gabrielle B, Pirot R, Domergue M, Sablayrolles C. Life cycle assessment of biofuels from Jatropha curcas in West Africa: a field study. GCB Bioenergy, 2009, 1(3): 197-210.

[101]

Negussie A, Achten WMJ, Aerts R, Norgrove L, Sinkala T, Hermy M, Muys B. Invasiveness risk of the tropical biofuel crop Jatropha curcas L. into adjacent land use systems: from the rumours to the experimental facts. GCB Bioenergy, 2013, 5(4): 419-430.

[102]

Negussie A, Achten WMJ, Norgrove L, Hermy M, Muys B. Invasiveness risk of biofuel crops using Jatropha curcas L. as a model species. Biofuel Bioprod Biorefin, 2013, 7(5): 485-498.

[103]

Openshaw K. A review of Jatropha curcas: an oil plant of unfulfilled promise. Biomass Bioenergy, 2000, 19: 1-15.

[104]

Orwa C, Mutua A, Kindt R, Jamnadass R, Anthony S (2009) Agroforestree database: a tree reference and selection guide version 4.0. http://www.worldagroforestry.org/af/treedb/. Accessed 10 Feb 2016

[105]

Osamu K, Carl HW. Biomass handbook, 1989, Philadelphia: Gordon Breach Science Publisher.

[106]

Patil VK, Bandare P, Kulkani PB, Naik GR. Progeny evaluation of Jatropha curcas and Pongamia pinnata with comparison to bioproductivity and biodiesel parameters. J For Res, 2015, 26(1): 137-142.

[107]

Peres CA, Schiesari LC, Dias-Leme CL. Vertebrate predation of Brazil-nuts (Bertholletia excelsa, Lecythidaceae), an agouti-dispersed Amazonian seed crop: a test of the escape hypothesis. J Trop Ecol, 1997, 13(1): 69-79.

[108]

Pimentel D, McNair S, Janecka J, Wightman J, Simmonds C, O’Connell C, Wong E, Russel L, Zern J, Aquino T, Tsomondo T. Economic and environmental threats of alien plant, animal, and microbe invasions. Agric Ecosyst Environ, 2001, 84(1): 1-20.

[109]

Purkayastha J, Sugla T, Paul A, Mazumdar P, Basu A, Solleti SK, Mazumdar P, Basu A, Mohommad A, Ahmed Z, Sahoo L. Efficient in vitro plant regeneration from shoot apices and gene transfer by particle bombardment in Jatropha curcas. Biol Plant, 2010, 54(1): 13-20.

[110]

Pyšek P, Richardson DM. Nentwig W. Traits associated with invasiveness in alien plants: where do we stand?. Ecological studies, 2007, New York: Springer.

[111]

Quinn LD, Barney JN, McCubbins JSN, Endres AB. Navigating the “noxious” and“invasive” regulatory landscape: suggestions for improved regulation. Bioscience, 2013, 63(2): 124-131.

[112]

Quirin M, Gärtner SO, Pehnt M, Reinhardt GA (2004) CO2 mitigation through Biofuels in the transport sector—tatus and perspectives, IFEU Institute for Energy and Environmental Research, Heidelberg. http://www.ifeu.de

[113]

Raghu S, Anderson RC, Daehler CC, Davis AS, Wiedenmann RN, Simberloff D, Mack RN. Adding biofuels to the invasive species fire?. Science, 2006 313 22 1742

[114]

Rakkimuthu R, Nithya PS, Aravinthan KM. In vitro propagation of Jatropha curcas L—a valuable multipurpose crop. Adv Biotech, 2011, 11: 24-25.

[115]

Ranade SA, Srivastava AP, Rana TS, Srivastava J, Tuli R. Easy assessment of diversity in Jatropha curcas L. plants using two single-primer amplification reaction (SPAR) methods. Biomass Bioenergy, 2008, 32(6): 533-540.

[116]

Randall J. Weed control for the preservation of biological diversity. Weed Technol, 1996, 10(2): 370-383.

[117]

Rao AVRK, Wani SP, Singh P, Srinivas K, Rao ChS. Water requirement and use by Jatropha curcas in semi-arid tropical location. Biomass Bioenergy, 2012, 39: 175-181.

[118]

Rejmánek M. Invasive plants: approaches and predictions. Austral Ecol, 2000, 25(5): 497-506.

[119]

Rejmánek M, Richardson DM. What attributes make some plant species more invasive?. Ecology, 1996, 77(6): 1655-1661.

[120]

Renner R. Green gold in a shrub. Entrepreneurs target the Jatropha plant as the next big biofuel. Sci Am, 2007, 296: 20-23.

[121]

Ricci A, Chekhovskiy K, Azhaguvel P, Albertini E, Falcinelli M, Saha M. Molecular characterization of Jatropha curcas L. Resources and identification of population-specific markers. Bioenergy Res, 2012, 5(1): 215-224.

[122]

Richardson DM, Blanchard R. Learning from our mistakes: minimizing problems with invasive biofuel plants. Curr Opin Env Sustainability, 2011, 3(1–2): 36-42.

[123]

Robertson GP, Dale VH, Doering OC, Hamburg SP, Melillo JM, Wander MM, Parton WJ, Adler PR, Barney JN, Cruse RM, Duke CS, Fearnside PM, Follett RF, Gibbs HK, Goldemberg J, Mladenoff DJ, Ojima D, Palmer MW, Sharpley A, Wallace L, Weathers KC, Wiens JA, Wilhelm WW. Agriculture. Sustainable biofuels redux. Science, 2008, 322: 49-50.

[124]

Romijn HA (2011) Land clearing and greenhouse gas emissions from Jatropha biofuels on African Miombo Woodlands. Energy Policy 39:5751–5762. doi:10.1016/j.enpol.2010.07.041

[125]

Romijn HA, Caniels MCJ. The Jatropha biofuels sector in Tanzania 2005–2009: evolution towards sustainability?. Res Policy, 2011, 40(4): 618-636.

[126]

Royal Botanic Gardens Sydney (2008) Australia’s Virtual Herbarium. Royal Botanic Gardens, Sydney, Australia. http://avhtas.tmag.tas.gov.au/. Accessed 12 Dec 15

[127]

Sabandar CW, Ahmat N, Jaafar FM, Sahidin I. Medicinal property, phytochemistry and pharmacology of several Jatropha species (Euphorbiaceae): a review. Phytochemistry, 2013, 85: 7-29.

[128]

Sachdeva K, Garg P, Singh M, Srivastava B. Wound healing potential of extract of Jatropha curcas L. (stem bark) in rats. Pharmacogn J, 2011, 3(25): 67-72.

[129]

Sanderson K. Wonder weed plans fail to flourish. Nature, 2009, 461(7262): 328-329.

[130]

Scarlat N, Dallemand JF. Recent developments of biofuels/bioenergy sustainability certification: a global overview. Energy Policy, 2011, 39(3): 1630-1646.

[131]

Scharlemann J, Laurance W. How green are biofuels?. Science, 2008, 319: 43.

[132]

Schmook B, Seralta-Peraza L (1997) Jatropha curcas: distribution and uses in the Yucatan Peninsula of Mexico. In: Gübitz GM, Mittelbach M, Trabi M (eds) Biofuels and industrial products from Jatropha curcas. Graz

[133]

Searchinger T, Heimlich R, Houghton RA, Dong F, Elobeid A, Fabiosa J, Tokgoz S, Heyes D, Yu TH. Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land use change. Science, 2008, 319(5867): 1238-1240.

[134]

Segerstedt A, Bobert J. Revising the potential of large-scale Jatropha oil production in Tanzania: an economic land evaluation assessment. Energy Policy, 2013, 57: 491-505.

[135]

Singh L, Bargali SS, Swamy SL (2006) Production, practices and post-Harvest Management in Jatropha. In: B Singh, R Swaminathan, V Ponraj (eds) Proceedings of the biodiesel conference toward energy independence—focus of Jatropha. Rashtrapati Bhawan, New Delhi

[136]

Singh B, Singh K, Shukla G, Goel VL, Pathre UV, Rahi TS, Tuli R. The field performance of some accessions of Jatropha curcas L. (biodiesel plant) on degraded sodic land in North India. Int J Green Energy, 2013, 10(10): 1026-1040.

[137]

Singh BSK, Rao GR, Chikara J, Kumar D, Mishra DK, Saikia SP, Pathre UV, Raghuvanshi N, Rahi TS, Tuli R. Agro-technology of Jatropha curcas for diverse environmental conditions in India. Biomass Bioenergy, 2013, 48: 191-202.

[138]

Soo-Young N. Inedible vegetable oils and their derivatives for alternative diesel fuels in CI engines: a review. Renew Sustain Energy Rev, 2011, 15(1): 131-149.

[139]

Spaan W, Bodna´r F, Idoe O, De Graaff J. Implementation of contour vegetation barriers under farmer’s conditions in Burkina Faso and Mali. Q J Int Agric, 2004, 43(1): 21-38.

[140]

Srivastava P, Behera SK, Gupta J, Jamil S, Singh N, Sharma YK. Growth performance, variability in yield traits and oil content of selected accessions of Jatropha curcas L. growing in a large scale plantation. Biomass Bioenergy, 2011, 35(9): 3936-3942.

[141]

Staubmann R, Foidl G, Foidl N, Gübitz GM, Lafferty RM, Arbizu VM, Steiner W. Biogas production from Jatropha curcas press cake. Appl Biochem Biotech, 1997, 63–65: 457-467.

[142]

Steer A, Hanson C (2015) Biofuels are not a green alternative to fossil fuels. http://www.theguardian.com/environment/2015/jan/29/biofuels-are-not-the-green-alternative-to-fossil-fuels-they-are-sold-as. Accessed 15 Nov 15

[143]

Stewart JR, Toma Y, Fernabdez FG, Nishiwaki A, Yamada T, Bollero G (2009) The ecology and agronomy of Miscanthus sinensis, a species important to bioenergy crop development, in its native range in Japan: a review. GCB Bioenergy 1:126–153. doi:10.1111/j.1757-1707.2009.01010.x

[144]

Tang W, Tang AY. Transgenic woody plants for biofuel. J. For Res, 2014, 25(2): 225-236.

[145]

Tilman D, Socolow R, Foley JA, Hill J, Larson E, Lynd L, Pacala S, Reilly J, Searchinger T, Somerville C, Williams R. Beneficial biofuels–The food, energy and environment trilemma. Science, 2009, 325(5938): 270-271.

[146]

Tiwari AK, Kumar A, Raheman H. Biodiesel production from Jatropha (Jatropha curcas) with high free fatty acids: an optimized process. Biomass Bioenergy, 2007, 31(8): 569-575.

[147]

Tobin J, Fulford DJ (2005) Life cycle assessment of the production of biodiesel from Jatropha. Masters Dissertation, The University of Reading (UK)

[148]

van Eijck J, Smeets E, Jongschaap R, Romijn H, Balkema A (2010) Jatropha assessment; agronomy, socio-economic issues and ecology, facts from literature. Copernicus Institute, Utrecht University, Eindhoven University of Technology and Wageningen PRI, Utrecht. http://www.agentschapnl.nl/content/report-jatrophaassessment

[149]

van Eijck J, Smeets E, Faaij A. The economic performance of jatropha, cassava and eucalyptus production systems for energy in an East African smallholder setting. Global Change Bioenerg, 2012, 4(6): 828-845.

[150]

van Eijck J, Romijn H, Smeets E, Bailis R, Rooijakkers M, Hooijkaas N, Verweij P, Faaij A. Comparative analysis of key socio-economic and environmental impacts of smallholder and plantation based jatropha biofuel production systems in Tanzania. Biomass Bioenergy, 2014, 61: 25-45.

[151]

van Vuuren DP, van Vliet J, Stehfest E. Future bio-energy potential under various natural constraints. Energy Policy, 2009, 37(11): 4220-4230.

[152]

Vitousek PM, Mooney HA, Lubchenco J, Melillo JM. Human domination of earth’s ecosystem. Science, 1997, 277(5325): 494-499.

[153]

von Maltitz G, Gasparatos A, Fabricius C. The rise, fall and potential resilience benefits of Jatropha in Southern Africa. Sustainability, 2014, 6(6): 3615-3643.

[154]

Wani TA, Kitchku S, Ram G. Genetic variability studies for morphological and qualitative attributes among Jatropha curcas L. accessions grown under subtropical conditions of North India. S Afr J Bot, 2012, 79: 102-105.

[155]

Whitaker M, Heath G (2008) Life cycle assessmentof the use of Jatropha biodiesel in Indian locomotives. Technical Report NREL/TP-6A2-44428, National Renewable Energy Laboratory, US Department of Energy, Golden, CO. http://www.osti.gov/bridge

[156]

Willson MF, Traveset A. Fenner M. The ecology of seed dispersal. Seeds: The ecology of regeneration in plant communities, 2000, Wallingford: CABI International 85 110

[157]

Wiskerke WT, Dornburg V, Rubanza CDK, Malimbwi RE, Faaij APC. Cost/benefit analysis of biomass energy supply options for rural smallholders in the semi-arid eastern part of Shinyanga Region in Tanzania. Renew Sustain Energy Rev, 2010, 14(1): 148-165.

[158]

Wittenberg R, Cock MJW. Invasive alien species: A toolkit of best prevention and management practices, 2001, Wallingford: CAB International

[159]

Zegada-Lizarazu W, Monti A. Are we ready to cultivate sweet sorghum as a bioenergy feedstock? A review on field management practices. Biomass Bioenergy, 2012, 40: 1-12.

[160]

Ziolkowska J. Optimizing biofuels production in an uncertain environment: conventional vs. advanced technologies. Appl Energy, 2014, 114: 366-376.

AI Summary AI Mindmap
PDF

121

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/