Osmoregulators in Hymenaea courbaril and Hymenaea stigonocarpa under water stress and rehydration

Luma Castro de Souza , Luana Moraes da Luz , Jéssica Taynara da Silva Martins , Cândido Ferreira de Oliveira Neto , Juscelino Gonçalves Palheta , Tamires Borges de Oliveira , Ediane Conceição Alves , Risely Ferraz de Almeida , Raimundo Leonardo Lima de Oliveira , Roberto Cezar Lobo da Costa , Nariane Quaresma Vilhena

Journal of Forestry Research ›› 2017, Vol. 29 ›› Issue (6) : 1475 -1479.

PDF
Journal of Forestry Research ›› 2017, Vol. 29 ›› Issue (6) : 1475 -1479. DOI: 10.1007/s11676-017-0456-x
Original Paper

Osmoregulators in Hymenaea courbaril and Hymenaea stigonocarpa under water stress and rehydration

Author information +
History +
PDF

Abstract

The objective of this work was to evaluate the effect of different water deficiency and rehydration levels on the concentrations of osmoregulators in two plant species (Hymenaea courbaril and H. Stigonocarpa) in the Amazon. We adopted a 2 × 5 × 5 factorial system, referring to 2 species (H. courbaril and H. stigonocarpa) and 5 stages of hydration and rehydration. The five hydration and rehydration stages were established in: (1) Control treatment E0; (2) Plants with 13 days of stress after incubation—E13; (3) Plants with 26 days of stress E26; (4) The plants that were established after 26 days after incubation and rehydrated for two days (RD2); (5) rehydrated for two days (RD4). The plants that were established after 26 days after incubation and rehydrated for four days. The experiment totaled fifty young plants with five replicates. Biochemical measurements were performed at the beginning of the experiment (E0) at 13 (E13) and 26 (E26) days after the water stress, in which the plants were rehydrated, repeating the analyses after two (RD2) and four (RD4) days. Both species increased the sucrose concentration by 18%, with a decrease of 52% in starch content. The RD4 time presented the highest mean starch concentration (0.19 mmol g−1 of the residue for H. courbaril and 0.27 mmol g−1 of residue for H. stigonocarpa). Increased proline concentrations were recorded for controls until RD2 for both species. For glycine betaine, the highest increases in treatments E26 and RD2 were observed for the H. courbaril species. Our rehydration period was not sufficient for total recovery of pre-stress concentrations of all studied solutes.

Keywords

Amazonia / Water stress / Osmotic adjustment / Proline / Sucrose

Cite this article

Download citation ▾
Luma Castro de Souza, Luana Moraes da Luz, Jéssica Taynara da Silva Martins, Cândido Ferreira de Oliveira Neto, Juscelino Gonçalves Palheta, Tamires Borges de Oliveira, Ediane Conceição Alves, Risely Ferraz de Almeida, Raimundo Leonardo Lima de Oliveira, Roberto Cezar Lobo da Costa, Nariane Quaresma Vilhena. Osmoregulators in Hymenaea courbaril and Hymenaea stigonocarpa under water stress and rehydration. Journal of Forestry Research, 2017, 29(6): 1475-1479 DOI:10.1007/s11676-017-0456-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Barbosa LM, Martins SE. Diversificando o reflorestamento no estado de São Paulo: espécies disponíveis por região e ecossistema, 2003, São Paulo: Instituto de Botânica 63

[2]

Bates LS, Waldren RP, Teare ID. Rapid determination of free proline for water-stress studies. Plant Soil, 1973, 39(1): 205-207.

[3]

Batista CUN, Medri ME, Bianchini E, Medri C, Pimenta JA. Tolerância à inundação de CecropiapachystachyaTrec. (Cecropiaceae): aspectos ecofisiológicos e morfoanatômicos. Acta Bot Bras, 2008, 22(1): 91-98.

[4]

Brito AEA, Palheta JG, Costa AS, Sousa JCM, Nascimento VR, Machado LC, Martins JTS, Costa TC, Nogueira GA, Andrade Júnior WV, Filho BGS, Costa TC. Growth and ecophysiological aspects in young plants of (Hymenaea courbaril L.) submitted to water stress and flooding. Int J Curr Res, 2016, 8(7): 34647-34654.

[5]

Carlin SD, Santos DMM. Indicadores fisiológicos da interação entre déficit hídrico e acidez do solo em cana-de-açúcar. Pesquisa Agropecuária Brasileira, 2009, 44(9): 1106-1113.

[6]

Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. Colorimetric method for determination of sugars and related substances. Anal Chem, 1956, 28(3): 350-356.

[7]

Grennan AK. Abiotic stress in rice. An ‘‘Omic’’ approach. Plant Physiol, 2006, 140(4): 1139-1141.

[8]

Grieve CM, Grattan SR. Rapid assay for determination of water soluble quaternary ammonium compounds. Plant Soil, 1983, 70(2): 303-307.

[9]

Kavi kishor PB, Sangam S, Amrutha RN, Sri laxmi P, Naidu KR, Rao KRSS, Rao S, Reddy KJ, Theriappan P, Sreeniv N. Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance. Curr Sci, 2005, 88(3): 424-438.

[10]

Larcher W (2006) Ecofisiologia Vegetal. Tradução: Prado CHBA. São Carlos: Rima

[11]

Liu C, Liu C, Liu Y, Guo K, Fan D, Li G, Zheng Y, Yu L, Yang R. Effect of trought on pigments, osmotic adjustment and antioxidante enzymes in six Woody plant species in karst habitats of southwestern China. Environ Exp Bot, 2011, 71(2): 174-183.

[12]

Lopes JLW, Guerrini IA, Silva MR, Saad JCC, Lopes CF. Estresse hídrico em plantio de eucalyptus grandis vs. eucalyptus urophylla, em função do solo, substrato e manejo hídrico de viveiro. Revista Árvore, 2011, 35(1): 31-39.

[13]

Mcneil SD, Nuccio ML, Hanson AD. Betaines and related osmoprotectants. Targets for metabolic engineering of stress resistance. Plant Physiol, 1999, 120: 945-949.

[14]

Melo HC, de Castro E, Soares ÂM, de Melo LA, Alves JD. Alterações anatômicas e fisiológicas em Setaria anceps Stapfex Massey e Paspalum paniculatum L. sob condições de déficit hídrico. Hoehnea, 2007, 34(2): 145-153.

[15]

Nascimento HHC (2009) Caracterização ecofisiologica de mudas de Jatobá (Hymenaea courbaril L.) submetidas a déficit hídrico. Dissertação (Mestrado)—Universidade Federal Rural de Pernambuco

[16]

Nascimento HHC, Nogueira RJMC, Silva EC, Silva MA. Análise do crescimento de mudas de jatobá (Hymenaea courbaril L.) em diferentes níveis de água no solo. Revista Árvore, 2011, 35(3): 617-626.

[17]

Nascimento HHC, Santos CA, Freire CS, Silva MA, Nogueira RJMC. Ajustamento osmótico em mudas de jatobá submetidas à salinidade em meio hidropônico. Revista Árvore, 2015, 39(4): 641-653.

[18]

Paiva HN, Vital BR (2003) Escolha da espécie florestal. Universidade Federal de Viçosa, Viçosa. (Cadernos Didáticos, 93)

[19]

Pimentel C. Relações hídricas em dois híbridos de milho sob dois ciclos de deficiência hídrica. Pesquisa Agropecuária Brasileira, 1999, 34(11): 2021-2027.

[20]

Pimentel C. A Relação da Planta com a Água, 2004, Rio de Janeiro: Seropédica 191

[21]

Sakamoto A, Murata N. The role of glycine-betaine in the protection of plants from stress: clues from transgenic plants. Plant Cell Environ, 2002, 25(2): 163-171.

[22]

Santos Filho BG, Neto CFO, Alves GAR, Lobato AKS, Costa RCL. 2010. Potencial hídrico e ajustamento osmótico em plantas jovens de jatobá (Hymenaea courbaril L.) oriundas de sementes da base petrolífera geólogo ‘Pedro de Moura’ em Urucu, município de Coari, AM submetidas à deficiência hídrica e alagamento. III Reunião Científica da Rede CTPetro Amazônia—Manaus. http://projetos.inpa.gov.br/ctpetro/IIIReuniao/ArtigosReuniao/PT1/Resumos/PT1%2002.pdf. Accessed 10 Jan 2017

[23]

SAS Institute. SAS—statistical analysis system: system for elementary statistical analysis, 1987, Cary: SAS Institute 416

[24]

Van Handel E. Direct microdetermination of sucrose. Anal Biochem, 1968, 22(2): 280-283.

AI Summary AI Mindmap
PDF

127

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/