Optimal and synchronized germination of Robinia pseudoacacia, Acacia dealbata and other woody Fabaceae using a handheld rotary tool: concomitant reduction of physical and physiological seed dormancy

Nuria Pedrol , Carolina G. Puig , Antonio López-Nogueira , María Pardo-Muras , Luís González , Pablo Souza-Alonso

Journal of Forestry Research ›› 2017, Vol. 29 ›› Issue (2) : 283 -290.

PDF
Journal of Forestry Research ›› 2017, Vol. 29 ›› Issue (2) : 283 -290. DOI: 10.1007/s11676-017-0445-0
Original Paper

Optimal and synchronized germination of Robinia pseudoacacia, Acacia dealbata and other woody Fabaceae using a handheld rotary tool: concomitant reduction of physical and physiological seed dormancy

Author information +
History +
PDF

Abstract

The Fabaceae (legume family) is one of the largest families of plants with a worldwide distribution and a major role in agriculture and in agroforestry. A hard seed coat impermeable to water is a typical feature of several species. Physical dormancy delays and reduces germination so that mechanical, physical and chemical scarification methods have been classically used to break seed dormancy of many species. We evaluate the effectiveness of a methodology to scarify seeds of several woody Fabaceae of ecological and economical importance, including Robinia pseudoacacia and Acacia dealbata and the shrubs Cytisus scoparius, C. multiflorus and Ulex europaeus. We describe the optimized use of a handheld rotary tool (HRT), and compare its effectiveness with other scarification methods reported to break dormancy such as boiling or dry heating. Total germination and/or speed of germination were enhanced after the application of the HRT, with germination percentages significantly higher than those achieved by other methods of scarification. Based on a thorough literature review, a mode of action for the HRT is suggested which could operate by breaking the physical and physiological dormancy of treated seeds through the combined action of coat abrasion and moderate temperatures. Considering these results, we recommend the application of this rapid, effective, low-cost and highly reproducible HRT method to break seed dormancy and enhance germination of these species and others with similar dormancy constraints.

Keywords

Combinational dormancy / Hardcoat / Rotary tool / Scarification / Temperature

Cite this article

Download citation ▾
Nuria Pedrol, Carolina G. Puig, Antonio López-Nogueira, María Pardo-Muras, Luís González, Pablo Souza-Alonso. Optimal and synchronized germination of Robinia pseudoacacia, Acacia dealbata and other woody Fabaceae using a handheld rotary tool: concomitant reduction of physical and physiological seed dormancy. Journal of Forestry Research, 2017, 29(2): 283-290 DOI:10.1007/s11676-017-0445-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abdallah MM, Jones RA, El-Beltagy AS. A method to overcome dormancy in Scotch broom (Cytisus scoparius). Environ Exp Bot, 1989, 29(4): 499-505.

[2]

Abudureheman B, Liu HL, Zhang DY, Guan K. Identification of physical dormancy and dormancy release patterns in several species (Fabaceae) of the cold desert, north-west China. Seed Sci Res, 2014, 24(2): 133-145.

[3]

Álvarez-Iglesias L, Puig CG, Garabatos A, Reigosa MJ, Pedrol N. Vicia faba aqueous extracts and plant material can suppress weeds and enhance crops. Allelopathy J, 2014, 34(2): 299-314.

[4]

Añorbe M, Gómez Gutiérrez JM, Pérez Fernández MA, Fernández Santos B. Influence of temperature on seed germination of Cytisus multiflorus (L´Hér.) and Cytisus oromediterraneus Riv. Mar., in Spanish. Stvdia Oecol, 1990, 7(1): 85-100.

[5]

Baskin JM, Baskin CC. A classification system for seed dormancy. Seed Sci Res, 2004, 14(1): 1-16.

[6]

Bentsink L, Hanson J, Hanhart CJ, Blankestijn-De Vries H, Coltrane C, Keizer P, El-Lithy M, Alonso-Blanco C, De Andrés MT, Reymond M, Van Eeuwijk F, Smeekens S, Koornneef M. Natural variation for seed dormancy in Arabidopsis is regulated by additive genetic and molecular pathways. Proc Natl Acad Sci, 2010, 107(9): 4264-4269.

[7]

Bewley JD. Seed germination and dormancy. Plant Cell, 1997, 9(7): 1055-1066.

[8]

Bradshaw A. Restoration of mine lands using natural processes. Ecol Eng, 1997, 8(4): 255-269.

[9]

Chaer GM, Resende AS, Campello EFC, de Faria SM, Boddey RM. Nitrogen-fixing legume tree species for the reclamation of severely degraded lands in Brazil. Tree Physiol, 2011, 31(2): 139-149.

[10]

Chiapusio G, Sánchez AM, Reigosa MJ, González L, Pellissier F. Do germination indices adequately reflect allelochemical effects on the germination process?. J Chem Ecol, 1997, 23(11): 2445-2454.

[11]

Cruz ED, de Carvalho JEU. Methods of overcoming dormancy in Schizolobium amazonicum Huber ex Ducke (Leguminosae–Caesalpinioideae) seeds, in Portuguese. Rev Bras Sementes, 2006, 28(3): 108-115.

[12]

Dapont EC, Silva JBD, Oliveira JDD, Alves CZ, Dutra AS. Methods of accelerating and standardising the emergence of seedlings in Schizolobium amazonicum. Rev Cienc Agron, 2014, 45(3): 598-605.

[13]

De Bertoldi C, De Leo M, Braca A, Ercoli L. Bioassay-guided isolation of allelochemicals from Avena sativa L.: allelopathic potential of flavone C-glycosides. Chemoecology, 2009, 19(3): 169-176.

[14]

Doran JC. Brown AG, Boland DJ, Doran JC, Martensz PN, Hall N. Seed, nursery practice and establishment. Multipurpose Australian trees and shrubs. Lesser-known species for fuel wood and agroforestry, 1986, Canberra: ACIAR 1 29

[15]

Finch-Savage WE, Leubner-Metzger G. Seed dormancy and the control of germination. New Phytol, 2006, 171(3): 501-523.

[16]

Ghantous KM, Sandler HA. Mechanical scarification of dodder seeds with handheld rotary tool. Weed Technol, 2012, 26(3): 485-489.

[17]

Ghassali F, Salkini AK, Petersen SL, Niane AA, Louhaichi M. Germination dynamics of Acacia species under different seed treatments. Range Manag Agrofor, 2012, 33(1): 37-42.

[18]

Griffin AR, Midgley SJ, Bush D, Cunningham PJ, Rinaudo AT. Global uses of Australian acacias—recent trends and future prospects. Divers Distrib, 2011, 17(5): 837-847.

[19]

Hanley ME. Thermal shock and germination in North-West European Genisteae: implications for heathland management and invasive weed control using fire. Appl Veg Sci, 2009, 12(3): 385-390.

[20]

Herranz JM, Ferrandis P, Martínez Sánchez JJ. Influence of heat on seed germination of seven Mediterranean Leguminosae species. Plant Ecol, 1998, 136(1): 95-103.

[21]

ISTA, International Seed Testing Association (1999) International rules for seed testing. Seed Sci Technol 27(Suppl.):1–333

[22]

Janzen DH. Enterolobium cyclocarpum seed passage rate and survival in horses, Costa Rican pleistocene seed dispersal agents. Ecology, 1981, 62(3): 593-601.

[23]

Kelly KM, Van Staden J, Bell WE. Seed coat structure and dormancy. Plant Growth Regul, 1992, 11(3): 201-209.

[24]

Khadduri NY, Harrington JT. Shaken, not stirred–a percussion scarification technique. Native Plants J, 2002, 3(1): 65-66.

[25]

Koornneef M, Bentsink L, Hilhorst H. Seed dormancy and germination. Curr Opin Plant Biol, 2002, 5(1): 33-36.

[26]

Kull CA, Shackleton CM, Cunningham PJ, Ducatillon C, Dufour-Dror JM, Esler KJ, Zylstra MJ. Adoption, use and perception of Australian acacias around the world. Divers Distrib, 2011, 17(5): 822-836.

[27]

Ligero P, de Vega A, van der Kolk JC, van Dam JEG. Gorse (Ulex europæus) as a possible source of xylans by hydrothermal treatment. Ind Crops Prod, 2011, 33(1): 205-210.

[28]

Linkies A, Graeber K, Knight C, Leubner-Metzger G. The evolution of seeds. New Phytol, 2010, 186(4): 817-831.

[29]

Lorenzo P, González L, Reigosa MJ. The genus Acacia as invader: the characteristic case of Acacia dealbata Link in Europe. Ann For Sci, 2010, 67(1): 1-11.

[30]

Mayer AM, Poljakoff-Mayber A. The germination of seeds, 1982, London: Pergamon.

[31]

Mondoni A, Tazzari ER, Zubani L, Orsenigo S, Rossi G. Percussion as an effective seed treatment for herbaceous legumes (Fabaceae): implications for habitat restoration and agriculture. Seed Sci Technol, 2013, 41(2): 175-187.

[32]

Nongrum A, Kharlukhi L. Effect of seed treatment for laboratory germination of Albizia chinensis. J For Res, 2013, 24(4): 709-713.

[33]

Patanè C, Gresta F. Germination of Astragalus hamosus and Medicago orbicularis as affected by seed-coat dormancy breaking techniques. J Arid Environ, 2006, 67(1): 165-173.

[34]

Peinetti R, Pereyra M, Kin A, Sosa A. Effects of cattle ingestion on viability and germination rate of caldén (Prosopis caldenia) seeds. J Range Manag, 1993, 46(6): 483-486.

[35]

Pereiras J, Puentes MA, Casal M. Effect of high temperatures on gorse (Ulex europaeus L.) seed germination/Efecto de las altas temperaturas sobre la germinación de las semillas del tojo (Ulex europaeus L.), in Spanish. Stvdia Oecol, 1985, 6: 125-133.

[36]

Pérez S, Renedo CJ, Ortiz A, Delgado F, Fernández I. Energy potential of native shrub species in northern Spain. Renew Energy, 2014, 62: 79-83.

[37]

Pérez-Fernández MA, Calvo-Magro E, Valentine A. Benefits of the symbiotic association of shrubby legumes for the rehabilitation of degraded soils under Mediterranean climatic conditions. Land Degrad Dev, 2016, 27(2): 395-405.

[38]

Pinto PC, Oliveira C, Costa CA, Gaspar A, Faria T, Ataíde J, Rodrigues AE. Kraft delignification of energy crops in view of pulp production and lignin valorization. Ind Crops Prod, 2015, 71: 153-162.

[39]

Pleguezuelo CRR, Zuazo VHD, Bielders C, Bocanegra JAJ, PereaTorres F, Martínez JRF. Bioenergy farming using woody crops. A review. Agron Sustain Dev, 2014, 35(1): 95-119.

[40]

Richardson RG, Hill RL. The biology of Australian weeds 34. Ulex europaeus L.. Plant Prot Q, 1998, 13(2): 46-58.

[41]

Richardson DM, Rejmánek M. Trees and shrubs as invasive alien species—a global review. Divers Distrib, 2011, 17(5): 788-809.

[42]

Rivas M, Reyes O, Casal M. Influence of heat and smoke treatments on the germination of six leguminous shrubby species. Int J Wildland Fire, 2006, 15(1): 73-80.

[43]

Rüdiger H, Gabius HJ. Plant lectins: occurrence, biochemistry, functions and applications. Glycoconj J, 2001, 18(8): 589-613.

[44]

Sarikurkcu C, Kocak MS, Tepe B, Uren MC. An alternative antioxidative and enzyme inhibitory agent from Turkey: Robinia pseudoacacia L. Ind Crops Prod, 2015, 78: 110-115.

[45]

Sheppard AW, Hodge P, Paynter Q, Rees M. Factors affecting invasion and persistence of broom Cytisus scoparius in Australia. J Appl Ecol, 2002, 39(5): 721-734.

[46]

Sheppard AW, Shaw RH, Sforza R. Top 20 environmental weeds for classical biological control in Europe: a review of opportunities, regulations and other barriers to adoption. Weed Res, 2006, 46(2): 93-117.

[47]

Smýkal P, Vernoud V, Blair MW, Soukup A, Thompson RD. The role of the testa during development and in establishment of dormancy of the legume seed. Front Plant Sci, 2014, 5: 1-19.

[48]

Stavang JA, Gallego-Bartolomé J, Gómez MD, Yoshida S, Asami T, Olsen JE, García-Martínez JL, Alabadí D, Blázquez MA. Hormonal regulation of temperature—induced growth in Arabidopsis. Plant J, 2009, 60(4): 589-601.

[49]

Straker KC, Quinn LD, Voigt TB, Lee DK, Kling GJ. Black locust as a bionergy feedstock: a review. BioEnergy Res, 2015, 8(3): 1117-1135.

[50]

Sy A, Grouzis M, Danthu P. Seed germination of seven Sahelian legume species. J Arid Environ, 2001, 49(4): 875-882.

[51]

Tárrega R, Calvo L, Trabaud L. Effect of high temperatures on seed germination of two woody Leguminosae. Vegetatio, 1992, 102(2): 139-147.

[52]

Teketay D. Germination ecology of twelve indigenous and eight exotic multipurpose leguminous species from Ethiopia. For Ecol Manag, 1996, 80(1): 209-223.

[53]

Thanos CA, Georghiou K, Kadis C, Pantazi C. Cistaceae: a plant family with hard seeds. Isr J Bot, 1992, 41(4–6): 251-263.

[54]

Tigabu M, Oden PC. Effect of scarification, gibberellic acid and temperature on seed germination of two multipurpose Albizia species from Ethiopia. Seed Sci Technol, 2001, 29(1): 11-20.

[55]

Tischer S, Hübner T. Model trials for phytoremediation of hydrocarbon-contaminated sites by the use of different plant species. Int J Phytorem, 2002, 4(3): 187-203.

[56]

Toda R, Ishikawa H. Hasting the germination of Robinia seeds by the use of boiling water. J Jpn For Soc, 1951 33 9 312

[57]

Twigg LE, Lowe TJ, Taylor CM, Calver MC, Martin GR, Stevenson C, How R. The potential of seed—eating birds to spread viable seeds of weeds and other undesirable plants. Austral Ecol, 2009, 34(7): 805-820.

[58]

Tzvetkova N, Petkova K. Bioaccumulation of heavy metals by the leaves of Robinia pseudoacacia as a bioindicator tree in industrial zones. J Environ Biol, 2015, 36(1): 59-63.

[59]

Uchida A, Yamamoto KT. Effects of mechanical vibration on seed germination of Arabidopsis thaliana (L.) Heynh. Plant Cell Physiol, 2002, 43(6): 647-651.

[60]

Vilela AE, Ravetta DA. The effect of seed scarification and soil-media on germination, growth, storage, and survival of seedlings of five species of Prosopis L. (Mimosaceae). J Arid Environ, 2001, 48(2): 171-184.

[61]

Wali MK. Ecological succession and the rehabilitation of disturbed terrestrial ecosystems. Plant Soil, 1999, 213(1–2): 195-220.

[62]

Watterson NA, Jones JA. Flood and debris flow interactions with roads promote the invasion of exotic plants along steep mountain streams, western Oregon. Geomorphology, 2006, 78(1): 107-123.

[63]

Yáñez R, Gómez B, Martínez M, Gullón B, Alonso JL. Valorization of an invasive woody species, Acacia dealbata, by means of Ionic liquid pretreatment and enzymatic hydrolysis. J Chem Technol Biotechnol, 2014, 89(9): 1337-1343.

[64]

Zare S, Tavili A, Darini MJ. Effects of different treatments on seed germination and breaking seed dormancy of Prosopis koelziana and Prosopis juliflora. J For Res, 2011, 22(1): 35-38.

AI Summary AI Mindmap
PDF

181

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/