Mini-cutting technique for Khaya anthotheca: selection of suitable IBA concentration and nutrient solution for its vegetative propagation

Joamir Barbosa Filho , Maria Angélica Di Carvalho , Leandro Silva de Oliveira , Enéas Ricardo Konzen , Gilvano Ebling Brondani

Journal of Forestry Research ›› 2017, Vol. 29 ›› Issue (1) : 73 -84.

PDF
Journal of Forestry Research ›› 2017, Vol. 29 ›› Issue (1) : 73 -84. DOI: 10.1007/s11676-017-0429-0
Original Paper

Mini-cutting technique for Khaya anthotheca: selection of suitable IBA concentration and nutrient solution for its vegetative propagation

Author information +
History +
PDF

Abstract

Khaya anthotheca is a hardwood species from Africa and recently introduced to Brazil. This species yields high-quality wood for diverse applications, but little has been done toward an effective propagation method for large-scale production in nurseries. We evaluated the effects of different concentrations of macro and micronutrients (i.e., 100, 50 and 25% of the concentration of a referenced solution) combined with indole-3-butyric acid (IBA) at 0 and 2 g L−1 on the survival rate of mini-stumps and the survival and adventitious rooting of K. anthotheca mini-cuttings. The mini-stumps were grown from a source of seeds imported from Ghana, West Africa. The mini-stumps survived at a high rate (97%). Consistently high shoot yields were obtained from the mini-stumps (average of 1.8 per mini-stump). High survival percentage of mini-cuttings and adventitious rooting were observed when solutions with 100 and 50% of the nutrients concentration were combined with 2 g L−1 IBA. Histological sections analyzed through optical microscopy indicated the tissues from mini-cutting stems were juvenile, which might have stimulated adventitious rooting. These results have important implications for further work aimed at establishing propagation strategies for K. anthotheca, which are of prime importance for assisting breeding programs of this species.

Keywords

African mahogany / Seminal mini-garden / Adventitious rooting / Juvenile tissue / Mini-stump

Cite this article

Download citation ▾
Joamir Barbosa Filho, Maria Angélica Di Carvalho, Leandro Silva de Oliveira, Enéas Ricardo Konzen, Gilvano Ebling Brondani. Mini-cutting technique for Khaya anthotheca: selection of suitable IBA concentration and nutrient solution for its vegetative propagation. Journal of Forestry Research, 2017, 29(1): 73-84 DOI:10.1007/s11676-017-0429-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alfenas AC, Zauza EAV, Mafia RG, Assis TF. Clonagem e doenças do eucalipto, 2009, Viçosa: Federal University of Viçosa–UFV 500

[2]

Almeida FD, Xavier A, Dias JMM, Paiva HN. Eficiência das auxinas (AIB e ANA) no enraizamento de miniestacas de clones de Eucalyptus cloeziana F. Muell Rev Árvore, 2007, 31: 455-463.

[3]

Alvares CA, Stape JL, Sentelhas PC, Gonçalves JLM, Sparovek G. Köppen’s climate classification map for Brazil. Meteorol Z, 2013, 22: 711-728.

[4]

Assis TF, Mafia RG. Borém A. Hibridação e clonagem. Biotecnologia florestal, 2007, Viçosa: Suprema Gráfica e Editora 93 121

[5]

Azad MS, Matin MA. Effect of indole-3-butyric acid on clonal propagation of Swietenia macrophylla through branch cutting. J Bot, 2015 (Article ID 249308)

[6]

Brondani GE, Baccarin FJB, de Wit Ondas HW, Stape JL, Gonçalves AN, Almeida M. Low temperature, IBA concentrations and optimal time for adventitious rooting of Eucalyptus benthamii mini-cuttings. J For Res, 2012, 23: 583-592.

[7]

Brondani GE, Wendling I, Brondani AE, Araujo MA, Silva ALL, Gonçalves AN. Dynamics of adventitious rooting in mini-cuttings of Eucalyptus benthamii × Eucalyptus dunnii. Acta Sci Agron, 2012, 34: 169-178.

[8]

Brondani GE, Baccarin FJB, Bergonci T, Gonçalves AN, Almeida M. Miniestaquia de Eucalyptus benthamii: efeito do genótipo, AIB, zinco, boro e coletas de brotações. Cerne, 2014, 20: 147-156.

[9]

Cornelius JP. The effectiveness of pruning in mitigating Hypsipyla grandella attack on young mahogany (Swietenia macrophylla King) trees. For Ecol Manag, 2001, 148: 287-289.

[10]

Cunha ACMCM, Wendling I, Júnior SL. Miniestaquia em sistema de hidroponia e em tubetes de corticeira-do-mato. Ciência Florestal, 2008, 18: 85-92.

[11]

Cunha ACMCM, Paiva HN, Leite HG, Barros NF, Leite FP. Influência do estado nutricional de minicepas no enraizamento de miniestacas de eucalipto. Rev Árvore, 2009, 33: 607-615.

[12]

Degen B, Ward SE, Lemes MR Verifying the geographic origin of mahogany (Swietenia macrophylla King) with DNA-fingerprints. Forensic Sci Int Genet, 2013, 7: 55-62.

[13]

Dugbley PW. Susceptibility of vegetatively propagated Khaya anthoteca to arbuscular mycorrhizae fungi (AMF) soil inoculum infection. Sci Res, 2015, 3: 13-18.

[14]

França TSFA, Arantes MDC, Paes JB Características anatômicas e propriedades físico-mecânicas das madeiras de duas espécies de mogno africano. Cerne, 2015, 21: 633-640.

[15]

Goulart PB, Xavier A. Efeito do tempo de armazenamento de miniestacas no enraizamento de clones de Eucalyptus grandis × E. urophylla. Rev Árvore, 2008, 32: 671-677.

[16]

Goulart PB, Xavier A, Cardoso NZ. Efeito dos reguladores de crescimento AIB e ANA no enraizamento de miniestacas de clones de Eucalyptus grandis × Eucalyptus urophylla. Rev Árvore, 2008, 32: 1051-1058.

[17]

Goulart PB, Xavier A, Dias JMM. Efeito de antioxidantes no enraizamento de miniestacas de clones de Eucalyptus grandis × E. urophylla. Rev Árvore, 2010, 34: 961-972.

[18]

Hartmann HT, Kester DE, Davies FT Jr, Geneve RL. Plant propagation: principles and practices, 2011 8 São Paulo: Prentice-Hall 915

[19]

Hung CD, Trueman SJ. In vitro propagation of the African mahogany Khaya senegalensis. New For, 2011, 42: 117-130.

[20]

Joker D. Khaya anthotheca (Welw.) C.D.C. Seed Leafl, 2003, 69: 1-2.

[21]

Karnovsky MJ. A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron microscopy. J Cell Biol, 1965, 27: 137-138.

[22]

Ky-Dembele C, Tigabu M, Bayala J Clonal propagation of Khaya senegalensis: the effects of stem length, leaf area, auxins, smoke solution, and stockplant age. Int J For Res, 2011 (Article ID 281269)

[23]

Leakey RRB, Mesen JF, Tchoundjeu Z, Longman KA, Dick JM, Newton A, Matin A, Grace J, Munro RC, Muthoka PN. Low-technology techniques for the vegetative propagation of tropical trees. Commonw For Rev, 1990, 69: 247-257.

[24]

Lee SE, Kim MR, Kim JH Antimalarial activity of anthothecol derived from Khaya anthotheca (Meliaceae). Phytomedicine, 2008, 15: 533-535.

[25]

Okere AU, Adegeye A. In vitro propagation of an endangered medicinal timber species Khaya grandiflora C. Dc. Afr J Biotechnol, 2011, 10: 3335-3339.

[26]

Opuni-Frimpong E, Karnosky DF, Storer AJ, Cobbinah JR. Key roles of leaves, stockplant age, and auxin concentration in vegetative propagation of two African mahoganies: Khaya anthotheca Welw. and Khaya ivorensis A. Chev. New For, 2008, 36: 115-123.

[27]

Overvoorde P, Fukaki H, Beeckman T. Auxin control of root development. Cold Spring Harb Perspect Biol, 2010, 2: a001537.

[28]

Owusu SA, Opuni-Frimpong E, Antwi-Boasiako C. Improving regeneration of mahogany: techniques for vegetative propagation of four African mahogany species using leafy stem cuttings. New For, 2014, 45: 687-697.

[29]

Pijut PM, Woeste KE, Michler CH. Promotion of adventitious root formation of difficult-to-root hardwood tree species. Hortic Rev, 2011, 38: 213-251.

[30]

Pinheiro AL. Ecologia, silvicultura e tecnologia de utilização dos mognos – africanos (Khaya spp.), 2011, Viçosa: Sociedade Brasileira de Agrossilvicultura–SBAG 102

[31]

Pop TI, Pamfil D, Bellini C. Auxin control in the formation of adventitious roots. Not Bot Horti Agrobot Cluj-Napoca, 2011, 39: 307-316.

[32]

Rowe DB, Blazich FA, Raper CD. Nitrogen nutrition of hedged stock plants of Loblolly Pine. I. Tissue nitrogen concentrations and carbohydrate status. New For, 2002, 24: 39-51.

[33]

Sakai WS. Simple method for differential staining of parafilm embedded plant material using toluidine blue. Stain Technol, 1973, 48: 247-249.

[34]

Tchoundjeu Z, Leakey RRB. Vegetative propagation of African Mahogany: effects of auxin, node position, leaf area and cutting length. New For, 1996, 11: 125-136.

[35]

Wendling I, Xavier A. Influência da miniestaquia seriada no vigor radicular de clones de Eucalyptus grandis. Rev Árvore, 2005, 29: 681-689.

[36]

Wendling I, Xavier A, Gomes JM, Pires IE, Andrade HB. Propagação clonal de híbridos de Eucalyptus spp. por miniestaquia. Ver Árvore, 2000, 24: 181-186.

[37]

Wendling I, Brondani GE, Dutra LF, Hansel FA. Mini-cuttings technique: a new ex vitro method for clonal propagation of sweetgum. New For, 2010, 39: 343-353.

[38]

Wendling I, Trueman SJ, Xavier A. Maturation and related aspects in clonal forestry-Part I: concepts, regulation and consequences of phase change. New For, 2014, 45: 449-471.

[39]

Wendling I, Trueman SJ, Xavier A. Maturation and related aspects in clonal forestry-part II: reinvigoration, rejuvenation and juvenility maintenance. New For, 2014, 45: 473-486.

[40]

Wendling I, Warburton PM, Trueman SJ. Maturation in Corymbia torelliana × C. citriodora stock plants: effects of pruning height on shoot production, adventitious rooting capacity, stem anatomy, and auxin and abscisic acid concentrations. Forests, 2015, 6: 3763-3778.

[41]

Xavier A, Dos Santos GA, Wendling I, De Oliveira ML. Propagação vegetativa de cedro-rosa por miniestaquia. Rev Árvore, 2003, 27: 139-143.

AI Summary AI Mindmap
PDF

116

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/