Predicting upslope expansion of sub-alpine forest in the Makalu Barun National Park, Eastern Nepal, with a hybrid cartographic model

Parveen Kumar Chhetri

Journal of Forestry Research ›› 2017, Vol. 29 ›› Issue (1) : 129 -137.

PDF
Journal of Forestry Research ›› 2017, Vol. 29 ›› Issue (1) : 129 -137. DOI: 10.1007/s11676-017-0421-8
Original Paper

Predicting upslope expansion of sub-alpine forest in the Makalu Barun National Park, Eastern Nepal, with a hybrid cartographic model

Author information +
History +
PDF

Abstract

The natural upper boundary of a forest (forest line) in mountain environments is an indicator of climate conditions. An increase in global average temperatures has resulted in an upward advance of the forest line. This advance may result in fragmentation of the alpine ecosystem and a loss of biodiversity. Therefore, it is important to identify potential areas where current forests can advance under scenarios of future climate change. I used expert knowledge and cartographic modeling to create a hybrid cartographic model considering five topographic variables to predict areas where forest line can expand in the future. The prediction accuracy of the model is around 82%. The model is able to predict areas above the current forest line that are suitable or unsuitable for future forest advance. Further inclusion of high-resolution satellite imagery and digital elevation models, as well as field-based information into the model can help to improve the model accuracy.

Keywords

Climate change / Forest line / Forest line advance / Hybrid cartographic model / Makalu Barun National Park

Cite this article

Download citation ▾
Parveen Kumar Chhetri. Predicting upslope expansion of sub-alpine forest in the Makalu Barun National Park, Eastern Nepal, with a hybrid cartographic model. Journal of Forestry Research, 2017, 29(1): 129-137 DOI:10.1007/s11676-017-0421-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bader MY, Ruijten JJ. A topography-based model of forest cover at the alpine tree line in the tropical Andes. J Biogeogr, 2008, 35(4): 711-723.

[2]

Boulangeat I, Philippe P, Abdulhak S, Douzet R, Garraud L, Lavergne S, Lavorel S, Van Es J, Vittoz P, Thuiller W. Improving plant functional groups for dynamic models of biodiversity: at the crossroads between functional and community ecology. Glob Change Biol, 2012, 18(11): 3464-3475.

[3]

Brown DG. Predicting vegetation types at treeline using topography and biophysical disturbance variables. J Veg Sci, 1994, 5(5): 641-656.

[4]

Butler DR, Malanson GP, Walsh SJ, Fagre DB. Influences of geomorphology and geology on alpine treeline in the American West—more important than climatic influences?. Phys Geogr, 2007, 28(5): 434-450.

[5]

Byers AC. Historical and contemporary human disturbance in the Upper Barun Valley, Makalu-Barun National Park and Conservation Area, East Nepal. Mt Res Dev, 1996, 16(3): 235-247.

[6]

Carlson BZ, Randin CF, Boulangeat I, Lavergne S, Thuiller W, Choler P. Working toward integrated models of alpine plant distribution. Alp Bot, 2013, 123(2): 41-53.

[7]

Carpenter C, Zomer R. Forest ecology of the Makalu Barun National Park and Conservation Area, Nepal. Mt Res Dev, 1996, 16(2): 135-148.

[8]

Chander G, Markham BL, Helder DL. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM + , and EO-1 ALI sensors. J Remote Sens Environ, 2009, 113(5): 893-903.

[9]

Chaplin J, Brabyn L. Using remote sensing and GIS to investigate the impacts of tourism on forest cover in the Annapurna Conservation Area, Nepal. Appl Geogr, 2013, 43: 159-168.

[10]

Chhetri PK, Cairns DM. Contemporary and historic population structure of Abies spectabilis at treeline in Barun valley, eastern Nepal Himalaya. J Mt Sci, 2015, 12(3): 558-570.

[11]

Chhetri PK, Cairns DM. Dendroclimatic response of Abies spectabilis at treeline ecotone of Barun Valley, eastern Nepal Himalaya. J For Res, 2016, 27(5): 1163-1170.

[12]

Chhetri PK, Shrestha KB, Cairns DM. Topography and human disturbances are major controlling factor in treeline pattern at Barun and Manang area in the Nepal Himalaya. J Mt Sci, 2017, 14(1): 119-127.

[13]

Colby JD. Topographic normalization in rugged terrain. Photogramm Eng Remote Sens, 1991, 57(5): 531-537.

[14]

Coops NC, Morsdorf F, Schaepman ME, Zimmermann NE. Characterization on an alpine treeline using airborne LIDAR data and physiological modeling. Glob Change Biol, 2013, 19(12): 3808-3821.

[15]

Danzeglocke J (2005) Remote sensing of upper timberline elevation in the Alps on different scales. In: Oluic (ed.) New strategies for European remote sensing. MillPress, Rosterdam

[16]

Devi N, Hagedorn F, Moiseev P, Bugmann H, Shiyatov S, Mazepa V, Rigling A. Expanding forests and changing growth forms of Siberian larch at the Polar Urals treeline during the 20th century. Glob Change Biol, 2008, 14(7): 1581-1591.

[17]

Eckert S, Kellenberger T, Itten K. Accuracy assessment of automatically derived digital elevation models from ASTER data in mountainous terrain. Int J Remote Sens, 2005, 26(9): 1943-1957.

[18]

Elith J, Leathwick JR. Species distribution models: ecological explanation and prediction across space and time. Annu Rev Ecol Evol Syst, 2009, 40: 677-697.

[19]

Fang KY, Wilmking M, Davi N, Zhou FF, Liu CZ. An ensemble weighting approach for dendroclimatology: drought Reconstructions for the Northeastern Tibetan Plateau. PLoS ONE, 2014 9 1 e86689

[20]

Forkuor G, Maathuis B. Comparison of SRTM and ASTER Derived Digital Elevation Models over Two Regions in Ghana-Implications for Hydrological and Environmental Modeling, 2012, InTech: Studies on Environmental and Applied Geomorphology 219 240

[21]

Forrest JL, Wikramanayake E, Shrestha R, Areendran G, Gyeltshen K, Maheshwari A, Thapa K. Conservation and climate change: assessing the vulnerability of snow leopard habitat to treeline shift in the Himalaya. Biol Cons, 2012, 150(1): 129-135.

[22]

Gaire NP, Koirala M, Bhuju DR, Borgaonkar HP. Treeline dynamics with climate change at the central Nepal Himalaya. Clim Past, 2014, 10(4): 1277-1290.

[23]

Harsch MA, HilleRisLambers J. Climate warming and seasonal precipitation change interact to limit species distribution shifts across Western North America. PLoS ONE, 2016 11 7 e0159184

[24]

Hirzel AH, Lay GL, Helfer V, Randin C, Guisan A. Evaluating the ability of habitat suitability models to predict species presences. Ecol Modeling, 2006, 199(2): 142-152.

[25]

Jenness J (2013) DEM Surface Tools. Jenness Enterprises. Available at: http://www.jennessent.com/arcgis/surface_area.htm

[26]

Kajimoto T, Daimaru H, Okamoto T, Otani T, Onodera H. Effects of snow avalanche disturbance on regeneration of subalpine Abies mariesii forest, northern Japan. Arct Antarct Alp Res, 2004, 36(4): 436-445.

[27]

Kattel DB, Yao TD, Yang K, Tian L, Yang G, Joswiak D. Temperature lapse rate in complex mountain terrain on the southern slope of the central Himalayas. Theoret Appl Climatol, 2013, 113(3–4): 671-682.

[28]

Kearney M, Porter W. Mechanistic niche modelling: combining physiological and spatial data to predict species ranges. Ecol Lett, 2009, 12(4): 334-350.

[29]

Körner C. A re-assessment of high elevation treeline positions and their explanation. Oecologia, 1998, 115(4): 445-459.

[30]

Körner C. Alpine treelines: functional ecology of the global high elevation tree limits, 2012, Basel: Springer

[31]

Lauver CL, Busby WH, Whistler JL. Testing a GIS model of habitat suitability for a declining grassland bird. Environ Manage, 2002, 30(1): 88-97.

[32]

Malanson GP. Complex responses to global change at alpine treeline. Phys Geogr, 2001, 22(4): 333-342.

[33]

McFeeters SK. The use of Normalized Difference Water Index (NDWI) in the delineation of open water features. Int J Remote Sens, 1996, 17(7): 1425-1432.

[34]

McFeeters SK. Using the Normalized Difference Water Index (NDWI) within a geographic information system to detect swimming pools for mosquito abatement: a practical approach. Remote Sens., 2013, 5(7): 3544-3561.

[35]

Panigrahy S, Anitha D, Kimothi MM, Singh SP. Timberline change detection using topographic map and satellite imagery. Trop Ecol, 2010, 51(1): 87-91.

[36]

Paulsen J, Körner C. GIS-analysis of tree-line elevation in the Swiss Alps suggests no exposure effect. J Veg Sci, 2001, 12(6): 817-824.

[37]

Pierce KB Jr, Lookingbill T, Urban D. A simple method for estimating potential relative radiation (PRR) for landscape-scale vegetation analysis. Landscape Ecol, 2005, 20(2): 137-147.

[38]

Randin CF, Vuissoz G, Liston GE, Vittoz P, Guisan A. Introduction of snow and geomorphic disturbance variables into predictive models of alpine plant distribution in the Western Swiss Alps. Arct Antarct Alp Res, 2009, 41(3): 347-361.

[39]

Schickhoff U. The upper timberline in the Himalayas, Hindu Kush and Karakorum: a review of geographical and ecological aspects. Mountain ecosystems, 2005, Berlin Heidelberg: Springer 275 354

[40]

Shrestha KB, Hofgaard A, Vandvik V. Recent treeline dynamics are similar between dry and mesic areas of Nepal, central Himalaya. J Plant Ecol, 2015, 8(4): 347-358.

[41]

Singh PC, Panigrayh S, Parihar JS, Dharaiya N. Modeling environmental niche of Himalayan birch and remote sensing based vicarious validation. Trop Ecol, 2013, 54(3): 321-329.

[42]

Vittoz P, Rulence B, Largey T, Frelechoux F. Effects of climate and land-use change on the establishment and growth of Cembran Pine (Pinus cembra L.) over the altitudinal treeline ecotone in the central Swiss Alps. Arct Antarct Alp Res, 2008, 40(1): 225-232.

[43]

Walsh SJ, Kelly NM. Treeline migration and terrain variability: integration of remote sensing digital enhancements and digital elevation models. Pap Proc Appl Geogr Conf, 1990, 13: 293-304.

[44]

Walsh SJ, Butler DR, Brown DG, Bian L. Heywood DI, Price MF. Form and pattern of alpine environments: an integrative approach to spatial analysis and modelling in Glacier National Park, U.S.A. Mountain environments and GIS, 1994, London: Taylor and Francis 189 216

[45]

Walsh SJ, Butler DR, Malanson GP, Crews-Meyer KA, Messina JP, Xiao NC. Mapping, modeling, and visualization of the influence of geomorphic processes on the alpine treeline ecotone, Glacier National Park, MT, USA. Geomorphology, 2003, 53(1–2): 129-145.

[46]

Wang WL, Körner C, Zhang ZM, Wu RD, Geng YP, Shi W, Ou XK. No slope exposure effect on alpine treeline position in the three parallel rivers region, SW China. Alp Bot, 2013, 123(2): 87-95.

[47]

Xu JC, Grumbine RE, Shrestha A, Eriksson M, Yang XF, Wang Y, Wilkes A. The melting Himalayas: cascading effects of climate change on water, biodiversity, and livelihoods. Conserv Biol, 2009, 23(3): 520-530.

AI Summary AI Mindmap
PDF

179

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/