Population and genetic diversity of Tibetan red deer based on fecal DNA

Hejiao Hu , Bo Xing , Miao Yang , Hamenya Mpemba , Zhonghai Lv , Minghai Zhang

Journal of Forestry Research ›› 2017, Vol. 29 ›› Issue (1) : 227 -232.

PDF
Journal of Forestry Research ›› 2017, Vol. 29 ›› Issue (1) : 227 -232. DOI: 10.1007/s11676-017-0419-2
Original Paper

Population and genetic diversity of Tibetan red deer based on fecal DNA

Author information +
History +
PDF

Abstract

The Tibet Shannan Red Deer Nature Reserve is the center of the geographic distribution of Tibetan red deer. This paper presents the results of DNA analysis of 199 red deer fecal pellet groups collected during 2013 and 2014 during the green-plant period. We successfully extracted DNA from 87 DNA pellet groups and determined individual identification with 12 microsatellite loci. We evaluated the genetic diversity of the population and various population estimates with Capwire in R software. The 87 successfully extracted pellet groups were from 50 individuals. In the population, the average number of alleles was 7.58 ± 0.18, the average effective number of alleles was 4.58 ± 0.15, and average polymorphism information content was 0.67 ± 0.01. Among the 12 loci, only T123 was moderately polymorphic; the other 11 loci were highly polymorphic. Expected heterozygosity ranged from 0.45 to 0.91, with an average of 0.72 ± 0.01, and average observed heterozygosity was 0.52 ± 0.11. Although Tibetan red deer remains endangered, the high genetic diversity indicates that this population has a good chance of recovery. This study provided insight that could be used by the local forestry department to develop programs to protect Tibetan red deer.

Keywords

Fecal DNA / Individual identification / Population / Tibetan red deer

Cite this article

Download citation ▾
Hejiao Hu, Bo Xing, Miao Yang, Hamenya Mpemba, Zhonghai Lv, Minghai Zhang. Population and genetic diversity of Tibetan red deer based on fecal DNA. Journal of Forestry Research, 2017, 29(1): 227-232 DOI:10.1007/s11676-017-0419-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Botstein D, White RL, Skolnick M, Davis RW. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet, 1980, 32(3): 314-331.

[2]

Deyoung RW, Demarais S, Honeycutt RL, Rooney AP, Gonzales RA, Gee KL. Genetic consequences of white-tailed deer (Odocoileus virginianus) restoration in Mississippi. Mol Ecol, 2003, 12(12): 3237-3252.

[3]

Eggert LS, Eggert JA, Woodruff DS. Estimating population sizes for elusive animals: the forest elephants of Kakum National Park, Ghana. Mol Ecol, 2003, 12(6): 1389-1402.

[4]

Eva B, Swenson JE, David T, Sven B, Pierre T. Estimating population size of elusive animals with DNA from hunter-collected feces: four methods for brown bears. Conserv Biol, 2005, 19(1): 150-161.

[5]

Fickel J, Reinsch A. Microsatellite markers for the European Roe deer (Capreolus capreolus). Mol Ecol, 2000, 9(7): 994-995.

[6]

Goodman SJ, Tamate HB, Wilson R, Nagata J, Tatsuzawa S, Swanson GM, Pemberton JM. Bottlenecks, drift and differentiation: the population structure and demographic history of sika deer (Cervus nippon) in the Japanese archipelago. Mol Ecol, 2001, 10(6): 1357-1370.

[7]

Goossens B, Waits LP, Taberlet P. Plucked hair samples as a source of DNA: reliability of dinucleotide microsatellite genotyping. Mol Ecol, 1998, 7(9): 1237-1241.

[8]

Han HB, Zhou XR, Pang BP, Zhang MZ, Li HP. Microsatellite analysis of Asia Oedaleus genetic diversity in Inner Mongolia. Acta Entomol Sin, 2013, 56(01): 79-87.

[9]

Kohn MH, York EC, Kamradt DA, Haught G, Sauvajot RM, Wayne RK. Estimating population size by genotyping faeces. Proc R Soc B Biol Sci, 1999, 266(1420): 657-663.

[10]

Liu WL. Critically endangered rare animal species—Tibetan red deer. Tibet Sci Technol, 2009, 6: 65-68.

[11]

Lovari S, Lorenzini R, Masseti M, Pereladova O, Carden RF, Brook SM (2016) Cervus elaphus. The IUCN red list of threatened species 2016: e.T55997072A22155320 http://dx.doi.org/10.2305/IUCN.UK.2016-2.RLTS.T55997072A22155320.en. Downloaded on 07 April 2017

[12]

Maudetr C, Miller C, Bassano B, Breitenmoserwürsten C, Gauthier D, Obexerruff G. Microsatellite DNA and recent statistical methods in wildlife conservation management: applications in Alpine ibex [Capra ibex(ibex)]. Mol Ecol, 2002, 11(3): 421-436.

[13]

Miller CR, Joyce P, Walts LP. A new method for estimating the size of small populations from genetic mark–recapture data. Mol Ecol, 2005, 14(7): 1991-2005.

[14]

Pennell MW, Stansbury CR, Waits LP, Miller CR. Capwire: a R package for estimating population census size from non-invasive genetic sampling. Mol Ecol Resour, 2013, 13(1): 154-157.

[15]

Solberg KH, Bellemain E, Drageset OM, Taberlet P, Swenson JE. An evaluation of field and non-invasive genetic methods to estimate brown bear (Ursus arctos) population size. Biol Conserv, 2006, 128(2): 158-168.

[16]

Sun JR, Li Y, Yan S, Zhang QW, Xu HL. Microsatellite marker analysis of genetic diversity of Cacopsylla chinensis (Yang et Li) (Hemiptera: Psyllidae) populations in China. Acta Entomol Sin, 2011, 54(7): 820-827.

[17]

Tian XM, Zhang MH, Zhang H, Yang CW, Jin ZM. Microsatellite analysis of red deer population genetic diversity in East Forest of Wanda Mountain in Heilongjiang Province. Chin J Ecol, 2010, 29(3): 543-548.

[18]

Weber JL. Informativeness of human (dC-dA)n. (dG-dT)n polymorphisms. Genomics, 1990, 7(4): 524-530.

[19]

Whittier CA, Dhar AK, Stem C, Goodall J, Alcivar WA. Comparison of DNA extraction methods for PCR amplification of mitochondrial cytochrome c oxidase subunit II (COII) DNA from primate fecal samples. Biotechnol Tech, 1999, 13(11): 771-779.

[20]

Wu H, Hu J, Wan Q, Fang S, Liu W, Zhang S. Microsatellite polymorphism and genetic structure of populations of sika deer. Acta Theriol Sin, 2008, 28(2): 109-116.

[21]

Yan LN, Zhang DX. Effects of sample size on various genetic diversity measures in population genetic study with microsatellite DNA markers. Curr Zool, 2004, 50(2): 279-290.

[22]

Yin J, Zhang MH, Xie XC. STR application in wild Siberian red deer individual identification. Chin J Wildl, 2007, 28(3): 42-44.

[23]

Zhan XJ. Using Noninvasive Genetic Sampling to Estimate the Population Size and Study Dispersal of Giant Pandas, 2006, Institute of Zoology, Chinese Academy of Sciences: Beijing.

[24]

Zhan X, Li M, Zhang Z, Goossens B, Chen Y, Wang H, Bruford MW, Wei F. Molecular censusing doubles giant panda population estimate in a key nature reserve. Curr Biol, 2006, 16(12): 451-452.

[25]

Zhang BW, Wei FW, Li M, Lv XP. Simple method of DNA extraction from giant Pandas and red pandas feces. Curr Zool, 2004, 50(3): 452-458.

[26]

Zhang H, Zhang MH, Luo LY. Screening of microsatellite loci of red deer in the eastern forest of Wanda Mountain in Heilongjiang Province. Chin J Wildl, 2010, 31(2): 59-62.

[27]

Zhang NN, Wang YQ, Wang QY, Wang ZB, Zhang XH, Bai JY, Mao W. Analysis on the genetic diversity of 9 microsatellite loci in Taihang native goat. Chin J Anim Sci, 2012, 38(3): 18-21.

AI Summary AI Mindmap
PDF

125

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/