Transcriptional mechanisms regulating gene expression and determining cell fates in plant development

Wei Tang , Anna Y. Tang

Journal of Forestry Research ›› 2017, Vol. 28 ›› Issue (5) : 863 -880.

PDF
Journal of Forestry Research ›› 2017, Vol. 28 ›› Issue (5) : 863 -880. DOI: 10.1007/s11676-017-0414-7
Review Article

Transcriptional mechanisms regulating gene expression and determining cell fates in plant development

Author information +
History +
PDF

Abstract

Transcriptional regulatory mechanisms that control transcriptional regulators, target genes, and their interactions provide new insights into general development processes throughout the life cycle of the plant. Although different molecular mechanisms that regulate plant growth and development have been identified, detailed transcriptional mechanisms that control gene expression, modulate developmental programmes, and determine cell fates in plant development are not fully understood. To increase our understanding on transcriptional mechanisms regulating diverse processes in plant development, we have reviewed the regulation of transcription during the process of development including transcriptional mechanisms regulating root, stem, leaf, flower, seed, embryo, endosperm, ovule, fruit, and chloroplast development. We have summarized the interaction, expression, transport, signaling events of transcriptional regulators and their targets in a number of model plants and highlighted the involvement of hormones and microRNAs in plant development. Understanding the precise transcriptional mechanisms regulating gene expression in plant development will be valuable for plant molecular breeding.

Keywords

MicroRNAs / Molecular breeding / Plant development / Root formation / Transcriptional regulators

Cite this article

Download citation ▾
Wei Tang, Anna Y. Tang. Transcriptional mechanisms regulating gene expression and determining cell fates in plant development. Journal of Forestry Research, 2017, 28(5): 863-880 DOI:10.1007/s11676-017-0414-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abraham Z, Iglesias-Fernandez R, Martinez M, Rubio-Somoza I, Diaz I, Carbonero P, Vicente-Carbajosa J. A developmental switch of gene expression in the Barley Seed mediated by HvVP1 (Viviparous-1) and HvGAMYB interactions. Plant Physiol, 2016, 170: 2146-2158.

[2]

Aibara I, Miwa K. Strategies for optimization of mineral nutrient transport in plants: multilevel regulation of nutrient-dependent dynamics of root architecture and transporter activity. Plant Cell Physiol, 2014, 55: 2027-2036.

[3]

Alvarez-Venegas R, Avramova Z. Methylation patterns of histone H3 Lys 4, Lys 9 and Lys 27 in transcriptionally active and inactive Arabidopsis genes and in atx1 mutants. Nucleic Acids Res, 2005, 33: 5199-5207.

[4]

Andriankaja ME, Danisman S, Mignolet-Spruyt LF, Claeys H, Kochanke I, Vermeersch M, De Milde L, De Bodt S, Storme V, Skirycz A, Maurer F, Bauer P, Muhlenbock P, Van Breusegem F, Angenent GC, Immink RG, Inze D. Transcriptional coordination between leaf cell differentiation and chloroplast development established by TCP20 and the subgroup Ib bHLH transcription factors. Plant Mol Biol, 2014, 85: 233-245.

[5]

Barak S, Nejidat A, Heimer Y, Volokita M. Transcriptional and posttranscriptional regulation of the glycolate oxidase gene in tobacco seedlings. Plant Mol Biol, 2001, 45: 399-407.

[6]

Bernhardt C, Zhao M, Gonzalez A, Lloyd A, Schiefelbein J. The bHLH genes GL3 and EGL3 participate in an intercellular regulatory circuit that controls cell patterning in the Arabidopsis root epidermis. Development, 2005, 132: 291-298.

[7]

Bramley PM. Regulation of carotenoid formation during tomato fruit ripening and development. J Exp Bot, 2002, 53: 2107-2113.

[8]

Broun P. Transcriptional control of flavonoid biosynthesis: a complex network of conserved regulators involved in multiple aspects of differentiation in Arabidopsis. Curr Opin Plant Biol, 2005, 8: 272-279.

[9]

Calonje M, Sanchez R, Chen L, Sung ZR. EMBRYONIC FLOWER1 participates in polycomb group-mediated AG gene silencing in Arabidopsis. Plant Cell, 2008, 20: 277-291.

[10]

Campbell MA, Gleichsner A, Alsbury R, Horvath D, Suttle J. The sprout inhibitors chlorpropham and 1,4-dimethylnaphthalene elicit different transcriptional profiles and do not suppress growth through a prolongation of the dormant state. Plant Mol Biol, 2010, 73: 181-189.

[11]

Carbonell-Bejerano P, Urbez C, Granell A, Carbonell J, Perez-Amador MA. Ethylene is involved in pistil fate by modulating the onset of ovule senescence and the GA-mediated fruit set in Arabidopsis. BMC Plant Biol, 2011, 11: 84.

[12]

Chen CY, Schmidt W. The paralogous R3 MYB proteins CAPRICE, TRIPTYCHON and ENHANCER OF TRY AND CPC1 play pleiotropic and partly non-redundant roles in the phosphate starvation response of Arabidopsis roots. J Exp Bot, 2015, 66: 4821-4834.

[13]

Chen Q, Liu Y, Maere S, Lee E, Van Isterdael G, Xie Z, Xuan W, Lucas J, Vassileva V, Kitakura S, Marhavy P, Wabnik K, Geldner N, Benkova E, Le J, Fukaki H, Grotewold E, Li C, Friml J, Sack F, Beeckman T, Vanneste S. A coherent transcriptional feed-forward motif model for mediating auxin-sensitive PIN3 expression during lateral root development. Nat Commun, 2015, 6: 8821.

[14]

Chiasson DM, Loughlin PC, Mazurkiewicz D, Mohammadidehcheshmeh M, Fedorova EE, Okamoto M, McLean E, Glass AD, Smith SE, Bisseling T, Tyerman SD, Day DA, Kaiser BN. Soybean SAT1 (Symbiotic Ammonium Transporter 1) encodes a bHLH transcription factor involved in nodule growth and NH4+ transport. Proc Natl Acad Sci USA, 2014, 111: 4814-4819.

[15]

Ciceri P, Locatelli F, Genga A, Viotti A, Schmidt RJ. The activity of the maize Opaque2 transcriptional activator is regulated diurnally. Plant Physiol, 1999, 121: 1321-1328.

[16]

Cord Neto G, Yunes JA, da Silva MJ, Vettore AL, Arruda P, Leite A. The involvement of Opaque 2 on beta-prolamin gene regulation in maize and Coix suggests a more general role for this transcriptional activator. Plant Mol Biol, 1995, 27: 1015-1029.

[17]

Crocco CD, Holm M, Yanovsky MJ, Botto JF. Function of B-BOX under shade. Plant Signal Behav, 2011, 6: 101-104.

[18]

Cruz-Alvarez M, Kirihara JA, Messing J. Post-transcriptional regulation of methionine content in maize kernels. Mol Gen Genet, 1991, 225: 331-339.

[19]

de Almeida Engler J, De Veylder L, De Groodt R, Rombauts S, Boudolf V, De Meyer B, Hemerly A, Ferreira P, Beeckman T, Karimi M, Hilson P, Inze D, Engler G. Systematic analysis of cell-cycle gene expression during Arabidopsis development. Plant J, 2009, 59: 645-660.

[20]

de Sousa SM, Paniago Mdel G, Arruda P, Yunes JA. Sugar levels modulate sorbitol dehydrogenase expression in maize. Plant Mol Biol, 2008, 68: 203-213.

[21]

Deng W, Yan F, Zhang X, Tang Y, Yuan Y. Transcriptional profiling of canola developing embryo and identification of the important roles of BnDof5.6 in embryo development and fatty acids synthesis. Plant Cell Physiol, 2015, 56: 1624-1640.

[22]

Dubois V, Botton E, Meyer C, Rieu A, Bedu M, Maisonneuve B, Mazier M. Systematic silencing of a tobacco nitrate reductase transgene in lettuce (Lactuca sativa L.). J Exp Bot, 2005, 56: 2379-2388.

[23]

Elhiti M, Ashihara H, Stasolla C. Distinct fluctuations in nucleotide metabolism accompany the enhanced in vitro embryogenic capacity of Brassica cells over-expressing SHOOTMERISTEMLESS. Planta, 2011, 234: 1251-1265.

[24]

El-Sharkawy I, Sherif S, El Kayal W, Mahboob A, Abubaker K, Ravindran P, Jyothi-Prakash PA, Kumar PP, Jayasankar S. Characterization of gibberellin-signalling elements during plum fruit ontogeny defines the essentiality of gibberellin in fruit development. Plant Mol Biol, 2014, 84: 399-413.

[25]

Febres VJ, Lee RF, Moore GA. Transgenic resistance to Citrus tristeza virus in grapefruit. Plant Cell Rep, 2008, 27: 93-104.

[26]

Fernandez L, Torregrosa L, Segura V, Bouquet A, Martinez-Zapater JM. Transposon-induced gene activation as a mechanism generating cluster shape somatic variation in grapevine. Plant J, 2010, 61: 545-557.

[27]

Fukazawa J, Teramura H, Murakoshi S, Nasuno K, Nishida N, Ito T, Yoshida M, Kamiya Y, Yamaguchi S, Takahashi Y. DELLAs function as coactivators of GAI-ASSOCIATED FACTOR1 in regulation of gibberellin homeostasis and signaling in Arabidopsis. Plant Cell, 2014, 26: 2920-2938.

[28]

Galli M, Liu Q, Moss BL, Malcomber S, Li W, Gaines C, Federici S, Roshkovan J, Meeley R, Nemhauser JL, Gallavotti A. Auxin signaling modules regulate maize inflorescence architecture. Proc Natl Acad Sci USA, 2015, 112: 13372-13377.

[29]

Gangappa SN, Crocco CD, Johansson H, Datta S, Hettiarachchi C, Holm M, Botto JF. The Arabidopsis B-BOX protein BBX25 interacts with HY5, negatively regulating BBX22 expression to suppress seedling photomorphogenesis. Plant Cell, 2013, 25: 1243-1257.

[30]

Ghareeb H, Becker A, Iven T, Feussner I, Schirawski J. Sporisorium reilianum infection changes inflorescence and branching architectures of maize. Plant Physiol, 2011, 156: 2037-2052.

[31]

Gibbs DJ, Md Isa N, Movahedi M, Lozano-Juste J, Mendiondo GM, Berckhan S, Marin-de la Rosa N, Vicente Conde J, Sousa Correia C, Pearce SP, Bassel GW, Hamali B, Talloji P, Tome DF, Coego A, Beynon J, Alabadi D, Bachmair A, Leon J, Gray JE, Theodoulou FL, Holdsworth MJ. Nitric oxide sensing in plants is mediated by proteolytic control of group VII ERF transcription factors. Mol Cell, 2014, 53: 369-379.

[32]

Gillmor CS, Park MY, Smith MR, Pepitone R, Kerstetter RA, Poethig RS. The MED12–MED13 module of Mediator regulates the timing of embryo patterning in Arabidopsis. Development, 2010, 137: 113-122.

[33]

Giorio G, Stigliani AL, D’Ambrosio C. Agronomic performance and transcriptional analysis of carotenoid biosynthesis in fruits of transgenic HighCaro and control tomato lines under field conditions. Transgenic Res, 2007, 16: 15-28.

[34]

Gonzalez N, Pauwels L, Baekelandt A, De Milde L, Van Leene J, Besbrugge N, Heyndrickx KS, Cuellar Perez A, Durand AN, De Clercq R, Van De Slijke E, Vanden Bossche R, Eeckhout D, Gevaert K, Vandepoele K, De Jaeger G, Goossens A, Inze D. A repressor protein complex regulates leaf growth in Arabidopsis. Plant Cell, 2015, 27: 2273-2287.

[35]

Hao Y, Wang T, Wang K, Wang X, Fu Y, Huang L, Kang Z. Transcriptome analysis provides insights into the mechanisms underlying wheat plant resistance to stripe rust at the adult plant stage. PLoS ONE, 2016, 11: e0150717.

[36]

Hazak O, Bloch D, Poraty L, Sternberg H, Zhang J, Friml J, Yalovsky S. A rho scaffold integrates the secretory system with feedback mechanisms in regulation of auxin distribution. PLoS Biol, 2010, 8: e1000282.

[37]

Hepworth SR, Zhang Y, McKim S, Li X, Haughn GW. BLADE-ON-PETIOLE-dependent signaling controls leaf and floral patterning in Arabidopsis. Plant Cell, 2005, 17: 1434-1448.

[38]

Hoecker U, Vasil IK, McCarty DR. Integrated control of seed maturation and germination programs by activator and repressor functions of Viviparous-1 of maize. Genes Dev, 1995, 9: 2459-2469.

[39]

Holton N, Cano-Delgado A, Harrison K, Montoya T, Chory J, Bishop GJ. Tomato BRASSINOSTEROID INSENSITIVE1 is required for systemin-induced root elongation in Solanum pimpinellifolium but is not essential for wound signaling. Plant Cell, 2007, 19: 1709-1717.

[40]

Hu TX, Yu M, Zhao J. Comparative transcriptional profiling analysis of the two daughter cells from tobacco zygote reveals the transcriptome differences in the apical and basal cells. BMC Plant Biol, 2010, 10: 167.

[41]

Huang M, Hu Y, Liu X, Li Y, Hou X. Arabidopsis LEAFY COTYLEDON1 mediates postembryonic development via interacting with PHYTOCHROME-INTERACTING FACTOR4. Plant Cell, 2015, 27: 3099-3111.

[42]

Huang YJ, Zhou Q, Huang JQ, Zeng YR, Wang ZJ, Zhang QX, Zhu YH, Shen C, Zheng BS. Transcriptional profiling by DDRT-PCR analysis reveals gene expression during seed development in Carya cathayensis Sarg. Plant Physiol Biochem, 2015, 91: 28-35.

[43]

Huda KM, Banu MS, Garg B, Tula S, Tuteja R, Tuteja N. OsACA6, a P-type IIB Ca(2)(+) ATPase promotes salinity and drought stress tolerance in tobacco by ROS scavenging and enhancing the expression of stress-responsive genes. Plant J, 2013, 76: 997-1015.

[44]

Hyun Y, Choi S, Hwang HJ, Yu J, Nam SJ, Ko J, Park JY, Seo YS, Kim EY, Ryu SB, Kim WT, Lee YH, Kang H, Lee I. Cooperation and functional diversification of two closely related galactolipase genes for jasmonate biosynthesis. Dev Cell, 2008, 14: 183-192.

[45]

Inigo S, Alvarez MJ, Strasser B, Califano A, Cerdan PD. PFT1, the MED25 subunit of the plant Mediator complex, promotes flowering through CONSTANS dependent and independent mechanisms in Arabidopsis. Plant J, 2012, 69: 601-612.

[46]

Iratni R, Baeza L, Andreeva A, Mache R, Lerbs-Mache S. Regulation of rDNA transcription in chloroplasts: promoter exclusion by constitutive repression. Genes Dev, 1994, 8: 2928-2938.

[47]

Ireland HS, Gunaseelan K, Muddumage R, Tacken EJ, Putterill J, Johnston JW, Schaffer RJ. Ethylene regulates Apple (Malus × domestica) fruit softening through a dose × time-dependent mechanism and through differential sensitivities and dependencies of cell wall-modifying genes. Plant Cell Physiol, 2014, 55: 1005-1016.

[48]

Ishizaki Y, Tsunoyama Y, Hatano K, Ando K, Kato K, Shinmyo A, Kobori M, Takeba G, Nakahira Y, Shiina T. A nuclear-encoded sigma factor, Arabidopsis SIG6, recognizes sigma-70 type chloroplast promoters and regulates early chloroplast development in cotyledons. Plant J, 2005, 42: 133-144.

[49]

Ito S, Song YH, Josephson-Day AR, Miller RJ, Breton G, Olmstead RG, Imaizumi T. FLOWERING BHLH transcriptional activators control expression of the photoperiodic flowering regulator CONSTANS in Arabidopsis. Proc Natl Acad Sci USA, 2012, 109: 3582-3587.

[50]

Ivanov R, Tiedemann J, Czihal A, Baumlein H. Transcriptional regulator AtET2 is required for the induction of dormancy during late seed development. J Plant Physiol, 2012, 169: 501-508.

[51]

Jenik PD, Barton MK. Surge and destroy: the role of auxin in plant embryogenesis. Development, 2005, 132: 3577-3585.

[52]

Jun JH, Ha CM, Fletcher JC. BLADE-ON-PETIOLE1 coordinates organ determinacy and axial polarity in arabidopsis by directly activating ASYMMETRIC LEAVES2. Plant Cell, 2010, 22: 62-76.

[53]

Kato H, Ishizaki K, Kouno M, Shirakawa M, Bowman JL, Nishihama R, Kohchi T. Auxin-mediated transcriptional system with a minimal set of components is critical for morphogenesis through the life cycle in Marchantia polymorpha. PLoS Genet, 2015, 11: e1005084.

[54]

Kim J, Lee M, Chalam R, Martin MN, Leustek T, Boerjan W. Constitutive overexpression of cystathionine gamma-synthase in Arabidopsis leads to accumulation of soluble methionine and S-methylmethionine. Plant Physiol, 2002, 128: 95-107.

[55]

Kim SY, Kim SG, Kim YS, Seo PJ, Bae M, Yoon HK, Park CM. Exploring membrane-associated NAC transcription factors in Arabidopsis: implications for membrane biology in genome regulation. Nucleic Acids Res, 2007, 35: 203-213.

[56]

Kim SH, Son GH, Bhattacharjee S, Kim HJ, Nam JC, Nguyen PD, Hong JC, Gassmann W. The Arabidopsis immune adaptor SRFR1 interacts with TCP transcription factors that redundantly contribute to effector-triggered immunity. Plant J, 2014, 78: 978-989.

[57]

Ko JH, Prassinos C, Keathley D, Han KH. Novel aspects of transcriptional regulation in the winter survival and maintenance mechanism of poplar. Tree Physiol, 2011, 31: 208-225.

[58]

Krichevsky A, Zaltsman A, Kozlovsky SV, Tian GW, Citovsky V. Regulation of root elongation by histone acetylation in Arabidopsis. J Mol Biol, 2009, 385: 45-50.

[59]

Kuhn C, Grof CP. Sucrose transporters of higher plants. Curr Opin Plant Biol, 2010, 13: 288-298.

[60]

Kumar G, Rattan UK, Singh AK. Chilling-mediated DNA methylation changes during dormancy and its release reveal the importance of epigenetic regulation during winter dormancy in apple (Malus × domestica Borkh.). PLoS ONE, 2016, 11: e0149934.

[61]

Kurepa J, Li Y, Smalle JA. Cytokinin signaling stabilizes the response activator ARR1. Plant J, 2014, 78: 157-168.

[62]

Kwak SH, Schiefelbein J. The role of the SCRAMBLED receptor-like kinase in patterning the Arabidopsis root epidermis. Dev Biol, 2007, 302: 118-131.

[63]

Langenkamper G, Manac’h N, Broin M, Cuine S, Becuwe N, Kuntz M, Rey P. Accumulation of plastid lipid-associated proteins (fibrillin/CDSP34) upon oxidative stress, ageing and biotic stress in Solanaceae and in response to drought in other species. J Exp Bot, 2001, 52: 1545-1554.

[64]

Lau S, De Smet I, Kolb M, Meinhardt H, Jurgens G. Auxin triggers a genetic switch. Nat Cell Biol, 2011, 13: 611-615.

[65]

Lavenus J, Goh T, Guyomarc’h S, Hill K, Lucas M, Voss U, Kenobi K, Wilson MH, Farcot E, Hagen G, Guilfoyle TJ, Fukaki H, Laplaze L, Bennett MJ. Inference of the Arabidopsis lateral root gene regulatory network suggests a bifurcation mechanism that defines primordia flanking and central zones. Plant Cell, 2015, 27: 1368-1388.

[66]

Lee HW, Park JH, Park MY, Kim J. GIP1 may act as a coactivator that enhances transcriptional activity of LBD18 in Arabidopsis. J Plant Physiol, 2014, 171: 14-18.

[67]

Liu X, Huang J, Wang Y, Khanna K, Xie Z, Owen HA, Zhao D. The role of floral organs in carpels, an Arabidopsis loss-of-function mutation in MicroRNA160a, in organogenesis and the mechanism regulating its expression. Plant J, 2010, 62: 416-428.

[68]

Liu K, Han M, Zhang C, Yao L, Sun J, Zhang T. Comparative proteomic analysis reveals the mechanisms governing cotton fiber differentiation and initiation. J Proteomics, 2012, 75: 845-856.

[69]

Liu Y, Zhang D, Ping J, Li S, Chen Z, Ma J. Innovation of a regulatory mechanism modulating semi-determinate stem growth through artificial selection in Soybean. PLoS Genet, 2016, 12: e1005818.

[70]

Lopato S, Borisjuk L, Milligan AS, Shirley N, Bazanova N, Parsley K, Langridge P. Systematic identification of factors involved in post-transcriptional processes in wheat grain. Plant Mol Biol, 2006, 62: 637-653.

[71]

Luo J, Ma N, Pei H, Chen J, Li J, Gao J. A DELLA gene, RhGAI1, is a direct target of EIN3 and mediates ethylene-regulated rose petal cell expansion via repressing the expression of RhCesA2. J Exp Bot, 2013, 64: 5075-5084.

[72]

Manzano C, Ramirez-Parra E, Casimiro I, Otero S, Desvoyes B, De Rybel B, Beeckman T, Casero P, Gutierrez C, DP JC. Auxin and epigenetic regulation of SKP2B, an F-box that represses lateral root formation. Plant Physiol, 2012, 160: 749-762.

[73]

Marhavy P, Bielach A, Abas L, Abuzeineh A, Duclercq J, Tanaka H, Parezova M, Petrasek J, Friml J, Kleine-Vehn J, Benkova E. Cytokinin modulates endocytic trafficking of PIN1 auxin efflux carrier to control plant organogenesis. Dev Cell, 2011, 21: 796-804.

[74]

Marin-de la Rosa N, Pfeiffer A, Hill K, Locascio A, Bhalerao RP, Miskolczi P, Gronlund AL, Wanchoo-Kohli A, Thomas SG, Bennett MJ, Lohmann JU, Blazquez MA, Alabadi D. Genome wide binding site analysis reveals transcriptional coactivation of cytokinin-responsive genes by DELLA proteins. PLoS Genet, 2015, 11: e1005337.

[75]

Martel C, Vrebalov J, Tafelmeyer P, Giovannoni JJ. The tomato MADS-box transcription factor RIPENING INHIBITOR interacts with promoters involved in numerous ripening processes in a COLORLESS NONRIPENING-dependent manner. Plant Physiol, 2011, 157: 1568-1579.

[76]

Matsumoto N, Okada K. A homeobox gene, PRESSED FLOWER, regulates lateral axis-dependent development of Arabidopsis flowers. Genes Dev, 2001, 15: 3355-3364.

[77]

Michelet B, Lukaszewicz M, Dupriez V, Boutry M. A plant plasma membrane proton-ATPase gene is regulated by development and environment and shows signs of a translational regulation. Plant Cell, 1994, 6: 1375-1389.

[78]

Minakuchi K, Kameoka H, Yasuno N, Umehara M, Luo L, Kobayashi K, Hanada A, Ueno K, Asami T, Yamaguchi S, Kyozuka J. FINE CULM1 (FC1) works downstream of strigolactones to inhibit the outgrowth of axillary buds in rice. Plant Cell Physiol, 2010, 51: 1127-1135.

[79]

Ming F, Ma H. A terminator of floral stem cells. Genes Dev, 2009, 23: 1705-1708.

[80]

Mirza N, Taj G, Arora S, Kumar A. Transcriptional expression analysis of genes involved in regulation of calcium translocation and storage in finger millet (Eleusine coracana L. Gartn.). Gene, 2014, 550: 171-179.

[81]

Moon YH, Chen L, Pan RL, Chang HS, Zhu T, Maffeo DM, Sung ZR. EMF genes maintain vegetative development by repressing the flower program in Arabidopsis. Plant Cell, 2003, 15: 681-693.

[82]

Moreno-Risueno MA, Van Norman JM, Moreno A, Zhang J, Ahnert SE, Benfey PN. Oscillating gene expression determines competence for periodic Arabidopsis root branching. Science, 2010, 329: 1306-1311.

[83]

Moreno-Risueno MA, Van Norman JM, Benfey PN. Transcriptional switches direct plant organ formation and patterning. Curr Top Dev Biol, 2012, 98: 229-257.

[84]

Mounier E, Pervent M, Ljung K, Gojon A, Nacry P. Auxin-mediated nitrate signalling by NRT1.1 participates in the adaptive response of Arabidopsis root architecture to the spatial heterogeneity of nitrate availability. Plant Cell Environ, 2014, 37: 162-174.

[85]

Niedojadlo K, Piecinski S, Smolinski DJ, Bednarska-Kozakiewicz E. Ribosomal RNA of Hyacinthus orientalis L. female gametophyte cells before and after fertilization. Planta, 2012, 236: 171-184.

[86]

Niu Q, Li J, Cai D, Qian M, Jia H, Bai S, Hussain S, Liu G, Teng Y, Zheng X. Dormancy-associated MADS-box genes and microRNAs jointly control dormancy transition in pear (Pyrus pyrifolia white pear group) flower bud. J Exp Bot, 2016, 67: 239-257.

[87]

Obrero A, Gonzalez-Verdejo CI, Die JV, Gomez P, Del Rio-Celestino M, Roman B. Carotenogenic gene expression and carotenoid accumulation in three varieties of Cucurbita pepo during fruit development. J Agric Food Chem, 2013, 61: 6393-6403.

[88]

Ohashi-Ito K, Fukuda H. Transcriptional regulation of vascular cell fates. Curr Opin Plant Biol, 2010, 13: 670-676.

[89]

Okada T, Bhalla PL, Singh MB. Transcriptional activity of male gamete-specific histone gcH3 promoter in sperm cells of Lilium longiflorum. Plant Cell Physiol, 2005, 46: 797-802.

[90]

Olimpieri I, Siligato F, Caccia R, Mariotti L, Ceccarelli N, Soressi GP, Mazzucato A. Tomato fruit set driven by pollination or by the parthenocarpic fruit allele are mediated by transcriptionally regulated gibberellin biosynthesis. Planta, 2007, 226: 877-888.

[91]

Or E, Boyer SK, Larkins BA. opaque2 modifiers act post-transcriptionally and in a polar manner on gamma-zein gene expression in maize endosperm. Plant Cell, 1993, 5: 1599-1609.

[92]

Oshino T, Abiko M, Saito R, Ichiishi E, Endo M, Kawagishi-Kobayashi M, Higashitani A. Premature progression of anther early developmental programs accompanied by comprehensive alterations in transcription during high-temperature injury in barley plants. Mol Genet Genom, 2007, 278: 31-42.

[93]

Peng H, He X, Gao J, Ma H, Zhang Z, Shen Y, Pan G, Lin H. Transcriptomic changes during maize roots development responsive to Cadmium (Cd) pollution using comparative RNAseq-based approach. Biochem Biophys Res Commun, 2015, 464: 1040-1047.

[94]

Perrin F, Brahem M, Dubois-Laurent C, Huet S, Jourdan M, Geoffriau E, Peltier D, Gagne S. Differential pigment accumulation in carrot leaves and roots during two growing periods. J Agric Food Chem, 2016, 64: 906-912.

[95]

Polko JK, van Rooij JA, Vanneste S, Pierik R, Ammerlaan AM, Vergeer-van Eijk MH, McLoughlin F, Guhl K, Van Isterdael G, Voesenek LA, Millenaar FF, Beeckman T, Peeters AJ, Maree AF, van Zanten M. Ethylene-mediated regulation of A2-Type CYCLINs modulates hyponastic growth in Arabidopsis. Plant Physiol, 2015, 169: 194-208.

[96]

Pu L, Liu MS, Kim SY, Chen LF, Fletcher JC, Sung ZR. EMBRYONIC FLOWER1 and ULTRAPETALA1 act antagonistically on Arabidopsis development and stress response. Plant Physiol, 2013, 162: 812-830.

[97]

Qi W, Zhang L, Feng W, Xu H, Wang L, Jiao Z. ROS and ABA signaling are involved in the growth stimulation induced by low-dose gamma irradiation in Arabidopsis seedling. Appl Biochem Biotechnol, 2015, 175: 1490-1506.

[98]

Quadrana L, Almeida J, Otaiza SN, Duffy T, Correa da Silva JV, de Godoy F, Asis R, Bermudez L, Fernie AR, Carrari F, Rossi M. Transcriptional regulation of tocopherol biosynthesis in tomato. Plant Mol Biol, 2013, 81: 309-325.

[99]

Questa JI, Song J, Geraldo N, An H, Dean C. Arabidopsis transcriptional repressor VAL1 triggers Polycomb silencing at FLC during vernalization. Science, 2016, 353: 485-488.

[100]

Radchuk R, Radchuk V, Gotz KP, Weichert H, Richter A, Emery RJ, Weschke W, Weber H. Ectopic expression of phosphoenolpyruvate carboxylase in Vicia narbonensis seeds: effects of improved nutrient status on seed maturation and transcriptional regulatory networks. Plant J, 2007, 51: 819-839.

[101]

Raimundo J, Sobral R, Bailey P, Azevedo H, Galego L, Almeida J, Coen E, Costa MM. A subcellular tug of war involving three MYB-like proteins underlies a molecular antagonism in Antirrhinum flower asymmetry. Plant J, 2013, 75: 527-538.

[102]

Rigal A, Yordanov YS, Perrone I, Karlberg A, Tisserant E, Bellini C, Busov VB, Martin F, Kohler A, Bhalerao R, Legue V. The AINTEGUMENTA LIKE1 homeotic transcription factor PtAIL1 controls the formation of adventitious root primordia in poplar. Plant Physiol, 2012, 160: 1996-2006.

[103]

Risk JM, Selter LL, Chauhan H, Krattinger SG, Kumlehn J, Hensel G, Viccars LA, Richardson TM, Buesing G, Troller A, Lagudah ES, Keller B. The wheat Lr34 gene provides resistance against multiple fungal pathogens in barley. Plant Biotechnol J, 2013, 11: 847-854.

[104]

Rodriguez-Villalon A, Gas E, Rodriguez-Concepcion M. Phytoene synthase activity controls the biosynthesis of carotenoids and the supply of their metabolic precursors in dark-grown Arabidopsis seedlings. Plant J, 2009, 60: 424-435.

[105]

Roh H, Jeong CW, Fujioka S, Kim YK, Lee S, Ahn JH, Choi YD, Lee JS. Genetic evidence for the reduction of brassinosteroid levels by a BAHD acyltransferase-like protein in Arabidopsis. Plant Physiol, 2012, 159: 696-709.

[106]

Romera-Branchat M, Andres F, Coupland G. Flowering responses to seasonal cues: what’s new?. Curr Opin Plant Biol, 2014, 21: 120-127.

[107]

Rudrabhatla P, Rajasekharan R. Developmentally regulated dual-specificity kinase from peanut that is induced by abiotic stresses. Plant Physiol, 2002, 130: 380-390.

[108]

Rueda-Lopez M, Crespillo R, Canovas FM, Avila C. Differential regulation of two glutamine synthetase genes by a single Dof transcription factor. Plant J, 2008, 56: 73-85.

[109]

Rymen B, Fiorani F, Kartal F, Vandepoele K, Inze D, Beemster GT. Cold nights impair leaf growth and cell cycle progression in maize through transcriptional changes of cell cycle genes. Plant Physiol, 2007, 143: 1429-1438.

[110]

Salehin M, Bagchi R, Estelle M. SCFTIR1/AFB-based auxin perception: mechanism and role in plant growth and development. Plant Cell, 2015, 27: 9-19.

[111]

Sanchez DH, Paszkowski J. Heat-induced release of epigenetic silencing reveals the concealed role of an imprinted plant gene. PLoS Genet, 2014, 10: e1004806.

[112]

Sassa N, Matsushita Y, Nakamura T, Nyunoya H. The molecular characterization and in situ expression pattern of pea SCARECROW gene. Plant Cell Physiol, 2001, 42: 385-394.

[113]

Scholten S, Lorz H, Kranz E. Paternal mRNA and protein synthesis coincides with male chromatin decondensation in maize zygotes. Plant J, 2002, 32: 221-231.

[114]

Selote D, Samira R, Matthiadis A, Gillikin JW, Long TA. Iron-binding E3 ligase mediates iron response in plants by targeting basic helix-loop-helix transcription factors. Plant Physiol, 2015, 167: 273-286.

[115]

Seok HY, Woo DH, Nguyen LV, Tran HT, Tarte VN, Mehdi SM, Lee SY, Moon YH. Arabidopsis AtNAP functions as a negative regulator via repression of AREB1 in salt stress response. Planta, 2016, 245: 329-341.

[116]

Shen H, He LF, Sasaki T, Yamamoto Y, Zheng SJ, Ligaba A, Yan XL, Ahn SJ, Yamaguchi M, Sasakawa H, Matsumoto H. Citrate secretion coupled with the modulation of soybean root tip under aluminum stress. Up-regulation of transcription, translation, and threonine-oriented phosphorylation of plasma membrane H+-ATPase. Plant Physiol, 2005, 138: 287-296.

[117]

Sicard A, Petit J, Mouras A, Chevalier C, Hernould M. Meristem activity during flower and ovule development in tomato is controlled by the mini zinc finger gene INHIBITOR OF MERISTEM ACTIVITY. Plant J, 2008, 55: 415-427.

[118]

Sieber P, Gheyselinck J, Gross-Hardt R, Laux T, Grossniklaus U, Schneitz K. Pattern formation during early ovule development in Arabidopsis thaliana. Dev Biol, 2004, 273: 321-334.

[119]

Silvente S, Camas A, Lara M. Heterogeneity of sucrose synthase genes in bean (Phaseolus vulgaris L.): evidence for a nodule-enhanced sucrose synthase gene. J Exp Bot, 2003, 54: 749-755.

[120]

Singh MB, Bhalla PL. Control of male germ-cell development in flowering plants. Bioessays, 2007, 29: 1124-1132.

[121]

Song S, Huang H, Gao H, Wang J, Wu D, Liu X, Yang S, Zhai Q, Li C, Qi T, Xie D. Interaction between MYC2 and ETHYLENE INSENSITIVE3 modulates antagonism between jasmonate and ethylene signaling in Arabidopsis. Plant Cell, 2014, 26: 263-279.

[122]

Sun X, Feng P, Xu X, Guo H, Ma J, Chi W, Lin R, Lu C, Zhang L. A chloroplast envelope-bound PHD transcription factor mediates chloroplast signals to the nucleus. Nat Commun, 2011, 2: 477.

[123]

Sun RZ, Pan QH, Duan CQ, Wang J. Light response and potential interacting proteins of a grape flavonoid 3′-hydroxylase gene promoter. Plant Physiol Biochem, 2015, 97: 70-81.

[124]

Tacken E, Ireland H, Gunaseelan K, Karunairetnam S, Wang D, Schultz K, Bowen J, Atkinson RG, Johnston JW, Putterill J, Hellens RP, Schaffer RJ. The role of ethylene and cold temperature in the regulation of the apple POLYGALACTURONASE1 gene and fruit softening. Plant Physiol, 2010, 153: 294-305.

[125]

Tadege M, Lin H, Bedair M, Berbel A, Wen J, Rojas CM, Niu L, Tang Y, Sumner L, Ratet P, McHale NA, Madueno F, Mysore KS. STENOFOLIA regulates blade outgrowth and leaf vascular patterning in Medicago truncatula and Nicotiana sylvestris. Plant Cell, 2011, 23: 2125-2142.

[126]

Toledo-Ortiz G, Johansson H, Lee KP, Bou-Torrent J, Stewart K, Steel G, Rodriguez-Concepcion M, Halliday KJ. The HY5-PIF regulatory module coordinates light and temperature control of photosynthetic gene transcription. PLoS Genet, 2014, 10: e1004416.

[127]

Tsukagoshi H, Busch W, Benfey PN. Transcriptional regulation of ROS controls transition from proliferation to differentiation in the root. Cell, 2010, 143: 606-616.

[128]

Vanhoudt N, Vandenhove H, Smeets K, Remans T, Van Hees M, Wannijn J, Vangronsveld J, Cuypers A. Effects of uranium and phosphate concentrations on oxidative stress related responses induced in Arabidopsis thaliana. Plant Physiol Biochem, 2008, 46: 987-996.

[129]

Vanneste S, Coppens F, Lee E, Donner TJ, Xie Z, Van Isterdael G, Dhondt S, De Winter F, De Rybel B, Vuylsteke M, De Veylder L, Friml J, Inze D, Grotewold E, Scarpella E, Sack F, Beemster GT, Beeckman T. Developmental regulation of CYCA2s contributes to tissue-specific proliferation in Arabidopsis. EMBO J, 2011, 30: 3430-3441.

[130]

Veerabagu M, Elgass K, Kirchler T, Huppenberger P, Harter K, Chaban C, Mira-Rodado V. The Arabidopsis B-type response regulator 18 homomerizes and positively regulates cytokinin responses. Plant J, 2012, 72: 721-731.

[131]

Vercruyssen L, Verkest A, Gonzalez N, Heyndrickx KS, Eeckhout D, Han SK, Jegu T, Archacki R, Van Leene J, Andriankaja M, De Bodt S, Abeel T, Coppens F, Dhondt S, De Milde L, Vermeersch M, Maleux K, Gevaert K, Jerzmanowski A, Benhamed M, Wagner D, Vandepoele K, De Jaeger G, Inze D. ANGUSTIFOLIA3 binds to SWI/SNF chromatin remodeling complexes to regulate transcription during Arabidopsis leaf development. Plant Cell, 2014, 26: 210-229.

[132]

Vilardell J, Martinez-Zapater JM, Goday A, Arenas C, Pages M. Regulation of the rab17 gene promoter in transgenic Arabidopsis wild-type, ABA-deficient and ABA-insensitive mutants. Plant Mol Biol, 1994, 24: 561-569.

[133]

Wang QQ, Liu F, Chen XS, Ma XJ, Zeng HQ, Yang ZM. Transcriptome profiling of early developing cotton fiber by deep-sequencing reveals significantly differential expression of genes in a fuzzless/lintless mutant. Genomics, 2010, 96: 369-376.

[134]

Wang X, Tang C, Huang X, Li F, Chen X, Zhang G, Sun Y, Han D, Kang Z. Wheat BAX inhibitor-1 contributes to wheat resistance to Puccinia striiformis. J Exp Bot, 2012, 63: 4571-4584.

[135]

Wang Y, Wang L, Zou Y, Chen L, Cai Z, Zhang S, Zhao F, Tian Y, Jiang Q, Ferguson BJ, Gresshoff PM, Li X. Soybean miR172c targets the repressive AP2 transcription factor NNC1 to activate ENOD40 expression and regulate nodule initiation. Plant Cell, 2014, 26: 4782-4801.

[136]

Wang H, Liu C, Cheng J, Liu J, Zhang L, He C, Shen WH, Jin H, Xu L, Zhang Y. Arabidopsis flower and embryo developmental genes are repressed in seedlings by different combinations of polycomb group proteins in association with distinct sets of Cis-regulatory elements. PLoS Genet, 2016, 12: e1005771.

[137]

Wardhan V, Jahan K, Gupta S, Chennareddy S, Datta A, Chakraborty S, Chakraborty N. Overexpression of CaTLP1, a putative transcription factor in chickpea (Cicer arietinum L.), promotes stress tolerance. Plant Mol Biol, 2012, 79: 479-493.

[138]

Wei B, Zhang J, Pang C, Yu H, Guo D, Jiang H, Ding M, Chen Z, Tao Q, Gu H, Qu LJ, Qin G. The molecular mechanism of sporocyteless/nozzle in controlling Arabidopsis ovule development. Cell Res, 2015, 25: 121-134.

[139]

Wirth S, Segretin ME, Mentaberry A, Bravo-Almonacid F. Accumulation of hEGF and hEGF-fusion proteins in chloroplast-transformed tobacco plants is higher in the dark than in the light. J Biotechnol, 2006, 125: 159-172.

[140]

Wynn AN, Rueschhoff EE, Franks RG. Transcriptomic characterization of a synergistic genetic interaction during carpel margin meristem development in Arabidopsis thaliana. PLoS ONE, 2011, 6: e26231.

[141]

Wyrzykowska J, Schorderet M, Pien S, Gruissem W, Fleming AJ. Induction of differentiation in the shoot apical meristem by transient overexpression of a retinoblastoma-related protein. Plant Physiol, 2006, 141: 1338-1348.

[142]

Xue LJ, Zhang JJ, Xue HW. Genome-wide analysis of the complex transcriptional networks of rice developing seeds. PLoS ONE, 2012, 7: e31081.

[143]

Yadav SR, Khanday I, Majhi BB, Veluthambi K, Vijayraghavan U. Auxin-responsive OsMGH3, a common downstream target of OsMADS1 and OsMADS6, controls rice floret fertility. Plant Cell Physiol, 2011, 52: 2123-2135.

[144]

Yamashino T. From a repressilator-based circadian clock mechanism to an external coincidence model responsible for photoperiod and temperature control of plant architecture in Arabodopsis thaliana. Biosci Biotechnol Biochem, 2013, 77: 10-16.

[145]

Yang C, Ma B, He SJ, Xiong Q, Duan KX, Yin CC, Chen H, Lu X, Chen SY, Zhang JS. MAOHUZI6/ETHYLENE INSENSITIVE3-LIKE1 and ETHYLENE INSENSITIVE3-LIKE2 regulate ethylene response of roots and coleoptiles and negatively affect salt tolerance in rice. Plant Physiol, 2015, 169: 148-165.

[146]

Yanovsky MJ, Kay SA. Molecular basis of seasonal time measurement in Arabidopsis. Nature, 2002, 419: 308-312.

[147]

Yoshida A, Suzaki T, Tanaka W, Hirano HY. The homeotic gene long sterile lemma (G1) specifies sterile lemma identity in the rice spikelet. Proc Natl Acad Sci USA, 2009, 106: 20103-20108.

[148]

Zeng J, Wang C, Chen X, Zang M, Yuan C, Wang X, Wang Q, Li M, Li X, Chen L, Li K, Chang J, Wang Y, Yang G, He G. The lycopene beta-cyclase plays a significant role in provitamin A biosynthesis in wheat endosperm. BMC Plant Biol, 2015, 15: 112.

[149]

Zhang Y, Liu H, Yin H, Wang W, Zhao X, Du Y. Nitric oxide mediates alginate oligosaccharides-induced root development in wheat (Triticum aestivum L.). Plant Physiol Biochem, 2013, 71: 49-56.

[150]

Zhang J, Chen J, Yi Q, Hu Y, Liu H, Liu Y, Huang Y. Novel role of ZmaNAC36 in co-expression of starch synthetic genes in maize endosperm. Plant Mol Biol, 2014, 84: 359-369.

[151]

Zhao C, Xu J, Chen Y, Mao C, Zhang S, Bai Y, Jiang D, Wu P. Molecular cloning and characterization of OsCHR4, a rice chromatin-remodeling factor required for early chloroplast development in adaxial mesophyll. Planta, 2012, 236: 1165-1176.

[152]

Zluvova J, Janousek B, Vyskot B. Immunohistochemical study of DNA methylation dynamics during plant development. J Exp Bot, 2001, 52: 2265-2273.

AI Summary AI Mindmap
PDF

197

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/