Evolutionary history and phylogeography of Scots pine (Pinus sylvestris L.) in Europe based on molecular markers

Endre Gy. Tóth , Zoltán A. Köbölkuti , Andrzej Pedryc , Mária Höhn

Journal of Forestry Research ›› 2017, Vol. 28 ›› Issue (4) : 637 -651.

PDF
Journal of Forestry Research ›› 2017, Vol. 28 ›› Issue (4) : 637 -651. DOI: 10.1007/s11676-017-0393-8
Review Article

Evolutionary history and phylogeography of Scots pine (Pinus sylvestris L.) in Europe based on molecular markers

Author information +
History +
PDF

Abstract

In this review we summarized recent historical records and molecular studies on evolutionary history and phylogeography of Scots pine with focus on the European highly fragmented distribution area of the species. Fossilized pollen, plant micro- and macrofossil records provided evidences on the large-scale species’ range shifts and demographic changes during the Quaternary. Populations of Scots pine were documented both in the glacial (incl. full glaciation) and interglacial periods. Recolonization of Europe after the glaciation originated from the (Sub) Mediterranean areas like the Balkan Peninsula but also from around the Eastern Alps and the surroundings of the Danube plain. Fennoscandia and northern European Baltic regions were most probably colonized from two main directions, from Western Europe and from the Russian Plain. Modern history of Scots pine was hardly affected by anthropogenic activities that started to strengthen in the Bronze and Iron Age. Along with the fossil records, molecular genetic tools were used to infer the origin and putative history including migration, differentiation and demography of the species. In this paper we compiled the major publications (30) of molecular genetic studies of the past 20 years derived from distinctly inherited organelle genomes (mitochondrial, chloroplast, nuclear) revealed by different marker systems (mtDNA-cox1, -nad1, -nad3, -nad7, ISSR, cpSSR, nSSR, B-SAP, SNP). It is important to consider that different phylogeographic patterns can be drawn by the analysis of different DNA marker types. Accordingly the use of more than one marker simultaneously outlines the most sophisticated phylogeographical pattern on the genetic lineages and can reveal high differentiation of the European distribution. Combined marker systems and markers derived from coding sequences have also been used to detect species’ phylogeographic patterns, but these were rarely applied to Scots pine. Although new molecular techniques can provide higher resolution data for populations, the reviewed results can shape the direction of further studies.

Keywords

Molecular genetic markers / Phylogeography / Pinus sylvestris / Quaternary history / Refugia

Cite this article

Download citation ▾
Endre Gy. Tóth, Zoltán A. Köbölkuti, Andrzej Pedryc, Mária Höhn. Evolutionary history and phylogeography of Scots pine (Pinus sylvestris L.) in Europe based on molecular markers. Journal of Forestry Research, 2017, 28(4): 637-651 DOI:10.1007/s11676-017-0393-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Adams JM (1997) Global land environments since the last interglacial. Oak Ridge National Laboratory, TN, USA. http://www.esd.ornl.gov/ern/qen/nerc.html. Accessed 10.04.16

[2]

Alsos IG, Eidesen PB, Ehrich D, Skrede I, Westergaard K, Jacobsen GH, Landvik JY, Taberlet P, Brochmann C. Frequent long-distance plant colonization in the changing. Arct Sci, 2007, 316: 1606-1609.

[3]

André C, Larsson LC, Laikre L, Bekkevold D, Brigham J, Carvalho GR, Dahlgren TG Detecting population structure in a high gene-flow species, Atlantic herring (Clupea harengus): direct, simultaneous evaluation of neutral vs putatively selected loci. Heredity, 2010, 106: 270-280.

[4]

Androsiuk P, Zielinski R, Polok K. B-SAP markers derived from the bacterial KatG gene differentiate populations of Pinus sylvestris and provide new insights into their postglacial history. Silva Fenn, 2011, 45: 3-18.

[5]

Avise JC. Weiss S, Ferrand N. Twenty-five key evolutionary insights from the phylogeographic revolution in population genetics. Phylogeography of southern European refugia, 2007, Dordrecht: Springer 7 21

[6]

Bai WN, Liao WJ, Zhang DY. Nuclear and chloroplast DNA phylogeography reveal two refuge areas with asymmetrical gene flow in a temperate walnut tree from East Asia. New Phytol, 2010, 188: 892-901.

[7]

Belletti P, Ferrazzini D, Piotti A, Monteleone I, Ducci F. Genetic variation and divergence in Scots pine (Pinus sylvestris L.) within its natural range in Italy. Eur J For Res, 2012, 131: 1127-1138.

[8]

Bennett KD. The post-glacial history of Pinus sylvestris in the British Isles. Quat Sci Rev, 1984, 3: 133-155.

[9]

Bennett KD. Quaternary refugia of north European trees. J Biogeogr, 1991, 18: 103-115.

[10]

Bennett KD (1995) Post-glacial dynamics of pine (Pinus sylvestris L.) and pinewoods in Scotland. In: Aldhous JR (eds) Our pinewood heritage. Proceedings of a conference at Culloden academy, inverness. Forestry Authority, pp 23–39

[11]

Bernhardsson C, Floran V, Ganea SL, García-Gil. Present genetic structure is congruent with the common origin of distant Scots pine populations in its Romanian distribution. For Ecol Manag, 2016, 361: 131-143.

[12]

Birks HJB, Birks HH. Quaternary palaeoecology, 1980, London: Edward Arnold.

[13]

Birks HJB, Williams W. Late-Quaternary vegetational history of the Inner Hebrides. Proc R Soc Edinb B Biol Sci, 1983, 83: 269-292.

[14]

Birky CW. Uniparental inheritance of mitochondrial and chloroplast genes: mechanisms and evolution. Proc Natl Acad Sci USA, 1995, 92: 11311-11318.

[15]

Birky CW. The inheritance of genes in mitochondria and chloroplasts: laws, mechanisms, and models. Annu Rev Genet, 2001, 35: 125-148.

[16]

Birky CW, Fuerst P, Maruyama T. Organelle gene diversity under migration, mutation, and drift: equilibrium expectations, approach to equilibrium, effects of heteroplasmic cells, and comparison to nuclear genes. Genetics, 1989, 121: 613-627.

[17]

Bock R, Knoop V. Genomics of chloroplasts and mitochondria, 2012, Berlin: Springer Science & Business Media 2 21

[18]

Bottema S, Voldring H, Aytug B. Late quaternary vegetation history of Northern Turkey. Palaeohistoria, 1974, 35(36): 13-72.

[19]

Buchovska J, Danusevičius D, Stanys V, Ir Šikšnianienė JB, Baniulis D. The location of the northern post-glacial refugium of Scots pine based on the mitochondrial DNA marker. Balt For, 2013, 19: 2-12.

[20]

Burban C, Petit RJ. Phylogeography of maritime pine inferred with organelle markers having contrasted inheritance. Mol Ecol, 2003, 12: 1487-1495.

[21]

Čelepirović N, Ivankovic M, Gradecki-Postenjak M, Nagy L, Borovics A, Agbaba AN, Littvay T. Review of investigation of variability of nad1 gene intron B/C of mitochondrial genome in Scots pine (Pinus sylvestris L.). Period Biol, 2009, 111: 453-457.

[22]

Cheddadi R, Vendramin GG, Litt T, Louis F, Kageyama M, Lorentz S, Laurent JM, Beaulieu JL, Sadori L, Lunt D. Imprints of glacial refugia in the modern genetic diversity of Pinus sylvestris. Glob Ecol Biogeogr, 2006, 15: 271-282.

[23]

Chen K, Abbott RJ, Milne RI, Tian XM, Liu J. Phylogeography of Pinus tabulaeformis Carr. (Pinaceae), a dominant species of coniferous forest in northern China. Mol Ecol, 2008, 17: 4276-4288.

[24]

Cipriano J, Carvalho A, Fernandes C, Gaspar MJ, Pires J, Bento J, Roxo L, Louzada J, Lima-Brito J. Evaluation of genetic diversity of Portuguese Pinus sylvestris L. populations based on molecular data and inferences about the future use of this germplasm. J Genet, 2013, 92: 41-48.

[25]

Cohen KM, Finney SC, Gibbard PL, Fan JX. The ICS international chronostratigraphic chart. Episodes, 2013, 36: 199-204.

[26]

Currat M, Ruedi M, Petit RJ, Excoffier L. The hidden side of invasions: massive introgression by local genes. Evolution, 2008, 62: 1908-1920.

[27]

Damblon F. Palaeobotanical study of representative upper Palaeolithic sites in the central European plain: a contribution to the SC-004 Project. Préhistoire Européenne, 1997, 11: 245-253.

[28]

Debreczy Z, Rácz I. Fenyők a föld körül, 2000, Budapest: Dendrológiai alapítvány Kft 157 158

[29]

Debreczy Z, Rácz I, Musia K. Conifers around the world, 2011, Budapest: Dendropress 21 24

[30]

Du FK, Petit RJ, Liu JQ. More introgression with less gene flow: chloroplast vs. mitochondrial DNA in the Picea asperata complex in China, and comparison with other conifers. Mol Ecol, 2009, 18: 1396-1407.

[31]

Ehrich D, Alsos IG, Brochmann C. Where did the northern peatland species survive the dry glacials: cloud-berry (Rubus chamaemorus) as an example. J Biogeogr, 2008, 35: 801-814.

[32]

Elsik CG, Williams CG. Low-copy microsatellite recovery from a conifer genome. Theor Appl Genet, 2001, 103: 1189-1195.

[33]

Elsik CG, Minihan VT, Hall SE, Scarpa AM, Williams CG. Low-copy microsatellite markers for Pinus taeda L. Genome, 2000, 43: 550-555.

[34]

Eronen M. The retreat of pine forest in Finnish Lapland since the Holocene climatic optimum: a general discussion with radiocarbon evidence from subfossil pines. Fennia, 1979, 157: 93-114.

[35]

Eronen M, Hyvairinen H. Subfossil pine dates and pollen diagrams from northern Fennoscandia. Geologiska Foreningens i Stockholm Forhandlingar, 1982, 103: 437-445.

[36]

Félegyházi E, Tóth C. A Halas-fenék lefűződött medermaradvány üledékanyagának szedimentológiai, mikromineralógiai és palinológiai vizsgálata. (Sedimentological, micro-mineralogical and palynological analyses of palaeochannel deposits at Halas-fenék). Acta Geogr Debrecina, 2003, 229: 21-30.

[37]

Feurdean A, Tantau I, Farcas S. Holocene variability in the range distribution and abundance of Pinus, Picea abies, and Quercus in Romania; implications for their current status. Quat Sci Rev, 2011, 30: 3060-3075.

[38]

Floran V, Sestras RE, Garcia Gil MR. Organelle genetic diversity and phylogeography of Scots pine (Pinus sylvestris L.). Not Bot Horti Agrobot Cluj, 2011, 39: 317-322.

[39]

Forrest I, Burg K, Klumpp R (2000) Genetic markers: tools for identifying and characterising Scots pine populations. Invest Agr Sist Recur, For Fuera de Serie no 1–2000

[40]

Ganea S, Ranade SS, Hall D, Abrahamsson S, García-Gil MR. Development and transferability of two multiplexes nSSR in Scots pine (Pinus sylvestris L.). J For Res, 2015, 26: 361-368.

[41]

González-Martínez SC, Robledo-Arnuncio JJ, Collada C, Díaz A, Williams CG, Alía R, Cervera MT. Cross-amplification and sequence variation of microsatellite loci in Eurasian hard pines. Theor Appl Genet, 2004, 109: 103-111.

[42]

González-Martínez SC, Dubreuil M, Riba M, Vendramin GG, Sebastiani F, Mayol M. Spatial genetic structure of Taxus baccata L. in the western Mediterranean Basin: past and present limits to gene movement over a broad geographic scale. Mol Phylogenet Evol, 2010, 55: 805-815.

[43]

Haesaerts P, Damblon F, Bachner M, Trnka G. Revised stratigraphy and chronology of the Willendorf II sequence, lower Austria. Archaeol Austriaca, 1996, 80: 25-42.

[44]

Hipkins VD, Krutovskii KV, Strauss SH. Organelle genomes in conifers: structure, evolution, and diversity. For Genet, 1994, 1: 179-189.

[45]

Hoffman JI, Dasmahapatra KK, Amos W, Phillips CD, Gelatt TS, Bickham JW. Contrasting patterns of genetic diversity at three different genetic markers in a marine mammal metapopulation. Mol Ecol, 2009, 18: 2961-2978.

[46]

Huntley B, Birks HJB. An atlas of past and present pollen maps for Europe, 0–13,000 years ago, 1983, Cambridge: Cambridge University Press 1 688

[47]

Huttunen A, Huttunen R, Vasari R, Panovska H, Bozilova E. Late-glacial and Holocene history of flora and vegetation in the western Rhodopes mountains, Bulgaria. Acta Fenn, 1992, 142: 1-23.

[48]

Hytteborn H, Maslov AA, Nazimova DI, Rysin LP. Andersson F. Boreal forests of Eurasia. Ecosystems of the World 6. Coniferous forests, 2005, Amsterdam: Elsevier 23 99

[49]

Jankovská V, Pokorný P. Forest vegetation of the last full-glacial period in the Western Carpathians (Slovakia and Czech Republic). Preslia, 2008, 80: 307-324.

[50]

Jaramillo-Correa JP, Grivet D, Terrab A, Kurt Y, De-Lucas AI, Wahid N, González-Martínez SC. The Strait of Gibraltar as a major biogeographic barrier in Mediterranean conifers: a comparative phylogeographic survey. Mol Ecol, 2010, 19: 5452-5468.

[51]

Jasińska AK, Boratyńska K, Dering M, Sobierajska KI, Ok T, Romo A, Boratyński A. Distance between south-European and south-west Asiatic refugial areas involved morphological differentiation: Pinus sylvestris case study. Plant Syst Evol, 2014, 300: 1487-1502.

[52]

Kelly DL, Connolly A (2000) A review of the plant communities associated with Scots pine (Pinus sylvestris L.) in Europe, and an evaluation of putative indicator/specialist species. Invest Agr Sist Recur, For Fuera de Serie no 1–2000, pp 15–39

[53]

Kinloch BB, Westfall RD, Forrest GI. Caledonian Scots pine: origins and genetic structure. New Phytol, 1986, 104: 703-729.

[54]

Korpelainen H. The evolutionary processes of mitochondrial and chloroplast genomes differ from those of nuclear genomes. Naturwissenschaften, 2004, 91: 505-518.

[55]

Kostia S, Varvio SL, Vakkari P, Pulkkinen P. Microsatellite sequences in a conifer, Pinus sylvestris. Genome, 1995, 38: 1244-1248.

[56]

Kremenetsky KV, Tarasov PE, Cherkinsky AE. Holocene history of the Kazakhsta”island“pine forests. Botaničeskij žurnal, 1994, 76: 13-29.

[57]

Kullman L, Kjälgren L. Holocene pine tree-line evolution in the Swedish Scandes: recent tree-line rise and climate change in a long-term perspective. Boreas, 2006, 35: 159-168.

[58]

Kyrkjeeide MO, Stenøien HK, Flatberg KI, Hassel K. Glacial refugia and post-glacial colonization patterns in European bryophytes. Lindbergia, 2014, 37: 47-59.

[59]

Labra M, Grassi F, Sgobati S, Ferrari C. Distribution of genetic variability in southern populations of Scots pine (Pinus sylvestris L.) from the Alps to the Apennines. Flora, 2006, 201: 468-476.

[60]

Laurentin H. Data analysis for molecular characterization of plant genetic resources. Genet Resour Crop Evol, 2009, 56: 277-292.

[61]

Lowe JJ. Late glacial and early Holocene lake sediments from the northern Apennines, Italy—pollen stratigraphy and radiocarbon dating. Boreas, 1992, 21: 193-208.

[62]

Lučić A, Popović V, Nevenić M, Ristić D, Rakonjac L, Ćirković-Mitrović T, Mladenović-Drinić S. Genetic diversity of Scots pine (Pinus sylvestris L.) populations in Serbia revealed by SSR markers. Arch Biol Sci, 2014, 66: 1485-1492.

[63]

Magyari EK. Late Quaternary vegetation history in the Hortobágy steppe and Middle Tisza floodplain, NE Hungary. Stud Bot Hung, 2011, 42: 185-203.

[64]

Magyari EK, Jakab G, Bálint M, Kern Z, Buczkó K, Braun M. Rapid vegetation response to Lateglacial and early Holocene climatic fluctuation in the South Carpathian Mountains (Romania). Quat Sci Rev, 2012, 35: 116-130.

[65]

Magyari EK, Kuneš P, Jakab G, Sümegi P, Pelánková B, Schäbitz F, Chytrý M. Late Pleniglacial vegetation in eastern-central Europe: are there modern analogues in Siberia?. Quat Sci Rev, 2014, 95: 60-79.

[66]

Magyari EK, Veres D, Wennrich V, Wagner B, Braun M, Jakab G, Karatson D, Pal Z, Ferenczy G, St-Onge G, Rethemeyer J, Francois JP, von Reumont F, Schabitz F. Vegetation and environmental responses to climate forcing during the Last Glacial Maximum and deglaciation in the East Carpathians: attenuated response to maximum cooling and increased biomass burning. Quat Sci Rev, 2014, 106: 278-298.

[67]

Matías L, Jump AS. Interactions between growth, demography and biotic interactions in determining species range limits in a warming world: the case of Pinus sylvestris. For Ecol Manag, 2012, 282: 10-22.

[68]

Mátyás CS. Erdészeti - természetvédelmi genetika, 2002, Budapest: Mezőgazdasági Kiadó Kft 356 362

[69]

McGeever AH, Mitchell FJ. Re-defining the natural range of Scots Pine (Pinus sylvestris L.): a newly discovered microrefugium in western Ireland. J Biogeogr, 2016, 43: 2199-2208.

[70]

Millar CI. Impact of the Eocene on the evolution of Pinus L. Ann Mo Bot Gard, 1993, 80: 471-498.

[71]

Millar CI. Richardson DM. Early evolution of pines. Ecology and biogeography of Pinus, 1998, Cambridge: Cambridge University Press 69 94

[72]

Mirov NT. The genus Pinus, 1967, New York: The Ronald Press Company 1 602

[73]

Morgante M, Pfeiffer A, Costacurta A, Olivieri AM, Powell W, Vendramin GG, Rafalski JA. Ahuja RM, Boerjan W, Neale BD. Polymorphic simple sequence repeats in nuclear and chloroplast genomes: applications to the population genetics of trees. Somatic cell genetics and molecular genetics of trees, 1996, Dordrecht: Springer 233 238

[74]

Naydenov KD, Tremblay FM, Alexandrov A, Fenton NJ. Structure of Pinus sylvestris L. populations in Bulgaria revealed by chloroplast microsatellites and terpene analysis: provenance tests. Biochem Syst Ecol, 2005, 33: 1226-1245.

[75]

Naydenov KD, Tremblay FM, Fenton NJ, Alexandrov A. Structure of Pinus nigra Arn. populations in Bulgaria revealed by chloroplast microsatellites and terpenes analysis: provenance tests. Biochem Syst Ecol, 2006, 34: 562-574.

[76]

Naydenov KD, Senneville S, Beaulieu J, Tramblay F, Bousquet J. Glacial vicariance in Eurasia: mitochondrial DNA evidence from Scots pine for a complex heritage involving genetically distinct refugia at mid-northern latitudes and in Asia Minor. BMC Evol Biol, 2007, 7: 233.

[77]

Naydenov KD, Naydenov MK, Tremblay F, Alexandrov A, Aubin-Fournier LD. Patterns of genetic diversity that result from bottlenecks in Scots Pine and the implications for local genetic conservation and management practices in Bulgaria. New Forest, 2011, 42: 179-193.

[78]

Newton AC, Allnutt TR, Gillies ACM, Lowe AJ, Ennos RA. Molecular phylogeography, intraspecific variation and the conservation of tree species. Trends Ecol Evol, 1999, 14: 140-145.

[79]

Parducci L, Jørgensen T, Tollefsrud MM, Elverland E, Alm T, Fontana SL, Bennett KD, Haile J, Matetovici I, Suyama Y, Edwards ME, Andersen K, Rasmussen M, Boessenkool S, Coissac E, Brochmann C, Taberlet P, Houmark-Nielsen M, Larsen NK, Orlando L, Gilbert MTP, Kjær KH, Alsos IG, Willerslev E. Glacial survival of boreal trees in northern Scandinavia. Science, 2012, 335: 1083-1086.

[80]

Pautasso M. Geographical genetics and the conservation of forest trees. Perspect Plant Ecol Evol Syst, 2009, 11: 157-189.

[81]

Pavia I, Mengl M, Gaspar MJ, Carvalho A, Heinze B, Lima-Brito J. Preliminary evidence of two potentially native populations of Pinus sylvestris L. in Portugal based on nuclear and chloroplast SSR markers. Aust J For Res, 2014, 131: 1-22.

[82]

Pérez-Obiol R, Juliá R. Climatic change on the Iberian Peninsula recorded in a 30,000-yr pollen record from Lake Banyoles. Quat Res, 1994, 41: 91-108.

[83]

Petit RJ, Vendramin GG. Weiss S, Ferrand N. Plant phylogeography based on organelle genes: an introduction. Phylogeography of southern European refugia, 2007, Amsterdam: Kluwer 23 97

[84]

Petit RJ, Kremer A, Wagner DB. Finite island model for organelle and nuclear genes in plants. Heredity, 1993, 71: 630-641.

[85]

Petit RJ, Duminil J, Fineschi S, Hampe A, Salvini D, Vendramin GG. Invited review: comparative organization of chloroplast, mitochondrial and nuclear diversity in plant populations. Mol Ecol, 2005, 14: 689-701.

[86]

Petit RJ, Hu FS, Dick CW. Forests of the past: a window to future changes. Science, 2008, 320: 1450-1452.

[87]

Plomion C, Bousquet J, Kole C. Genetics, genomics and breeding of conifers, 2011, New York: CRC Press.

[88]

Powell W, Morgante M, McDevit R, Vendramin GG, Rafalski JA. Polymorphic simple sequence repeat regions in chloroplast genomes: applications to the population genetics of pines. Proc Natl Acad Sci, 1995, 92: 7759-7763.

[89]

Provan J, Soranzo N, Wilson NJ, McNicol JW, Forrest GI, Cottrell J, Powell W. Gene-pool variation in Caledonian and European Scots pine (Pinus sylvestris L.) revealed by chloroplast simple-sequence repeats. Proc R Soc Lond B Biol Sci, 1998, 265: 1697-1705.

[90]

Prus-Glowacki W, Stephan BR, Bujas E, Alía R, Marciniak A. Genetic differentiation of autochthonous populations of Pinus sylvestris (Pinaceae) from the Iberian Peninsula. Plant Syst Evol, 2003, 239: 55-66.

[91]

Prus-Glowacki W, Urbaniak L, Bujas E, Curtu LA. Genetic variation of isolated and peripheral populations of Pinus sylvestris (L.) from glacial refugia. Flora, 2011, 207: 150-158.

[92]

Pyhäjärvi T, García-Gil MR, Knürr T, Mikkonen M, Wachowiak W, Savolainen O. Demographic history has influenced nucleotide diversity in European Pinus sylvestris populations. Genetics, 2007, 177: 1713-1724.

[93]

Pyhäjärvi T, Salmela MJ, Savolainen O. Colonization routes of Pinus sylvestris inferred from distribution of mitochondrial DNA variation. Tree Genet Genomes, 2008, 4: 247-254.

[94]

Richardson DM. Ecology and biogeography of Pinus, 1998, Cambridge: Cambridge University Press 3 118

[95]

Robledo-Arnuncio JJ, Alía R, Gil L. High levels of genetic diversity in a long-term European glacial refugium of Pinus sylvestris L. For Genet, 2004, 11: 239-248.

[96]

Robledo-Arnuncio JJ, Collada C, Alía R, Gil L. Genetic structure of montane isolates of Pinus sylvestris L. in a Mediterranean refugial area. J Biogeogr, 2005, 32: 595-605.

[97]

Rudner E, Sümegi P. Recurring taiga forest-steppe habitats in the Carpathian Basin in the Upper Weichselian. Quat Int, 2001, 76(77): 177-189.

[98]

Rudner E, Sümegi P, Tóth I, Beszeda I, Hertelendi E (1995) The vegetation of the upper-Weichselian in the central and southern part of the Great Hungarian Plain. 7th European Ecological Congress, 108 pp

[99]

Sannikov SN, Petrova IV. Phylogenogeography and genotaxonomy of Pinus sylvestris L. populations. Russ J Ecol, 2012, 43: 273-280.

[100]

Scalfi M, Piotti A, Rossi M, Piovani P. Genetic variability of Italian southern Scots pine (Pinus sylvestris L.) populations: the rear edge of the range. Eur J Forest Res, 2009, 128: 377-386.

[101]

Schönswetter P, Stehlik I, Holderegger R, Tribsce A. Molecular evidence for glacial refugia of mountain plants in the European Alps. Mol Ecol, 2005, 14: 3547-3555.

[102]

Sebastiani F, Pinzauti F, Kujala ST, González-Martínez SC, Vendramin GG. Novel polymorphic nuclear microsatellite markers for Pinus sylvestris L. Conserv Genet Resour, 2012, 4: 231-234.

[103]

Semerikov VL, Semerikova SA, Dymshakova OS, Zatsepina KG, Tarakanov VV, Tikhonova IV, Kalchenko LI. Microsatellite loci polymorphism of chloroplast DNA of scots pine (Pinus sylvestris L.) in Asia and eastern Europe. Russ J Genet, 2014, 50: 577-585.

[104]

Shi YZ, Forneris N, Rajora OP. Highly informative single-copy nuclear microsatellite DNA markers developed using an AFLP-SSR approach in black spruce (Picea mariana) and red spruce (P. rubens). PLoS ONE, 2014, 9: e103789.

[105]

Sinclair WT, Morman JD, Ennos RA. Multiple origins for Scots pine (Pinus sylvestris L.) in Scotland: evidence from mitochondrial DNA variation. Heredity, 1998, 809: 233-240.

[106]

Sinclair WT, Morman JD, Ennos RA. The postglacial history of Scots pine (Pinus sylvestris L.) in western Europe: evidence from mitochondrial DNA variation. Mol Ecol, 1999, 8: 83-88.

[107]

Soltis DE, Gitzendanner MA, Strenge DD, Soltis PS. Chloroplast DNA intraspecific phylogeography of plants from the Pacific Northwest of North America. Plant Syst Evol, 1997, 206: 353-373.

[108]

Soranzo N, Provan J, Powell W. Characterization of microsatellite loci in Pinus sylvestris L. Mol Ecol, 1998, 7: 1260-1261.

[109]

Soranzo N, Provan J, Powell W. An example of microsatellite length variation in the mitochondrial genome of conifers. Genome, 1999, 42: 158-161.

[110]

Soranzo N, Alia R, Provan J, Powell W. Patterns of variation at a mitochondrial sequence-tagged-site locus provides new insights into the postglacial history of European Pinus sylvestris populations. Mol Ecol, 2000, 9: 1205-1211.

[111]

Soto A, Robledo-Arnuncio JJ, González-Martínez SC, Smouse PE, Alia R. Climatic niche and neutral genetic diversity of the six Iberian pine species: a retrospective and prospective view. Mol Ecol, 2010, 19: 1396-1409.

[112]

Stewart JR, Lister AM, Barnes I, Dalén L. Refugia revisited: individualistic responses of species in space and time. Proc R Soc B Biol Sci, 2010, 277: 661-671.

[113]

Stieber J. A magyarországi felsőpleisztocén vegetációtörténete az anthrakotómiai eredmények (1957-IG) Tükrében. Földtani Közlöny, 1967, 97: 308-317.

[114]

Sümegi P, Kertész R, Hertelendi E. Environmental change and human adaptation in the Carpathian Basin at the lateglacial/postglacial transition. Br Archaeol Rep, 2002, 1043: 171.

[115]

Sümegi P, Bodor E, Törőcsik T (2005) The origins of alkalisation in the Hortobágy region in the light of the palaeoenvironmental studies at Zám-Halasfenék. In: Gál E, Juhász I, Sümegi P (eds) Environmental archaeology in northeastern Hungary. Varia Archaeologica Hungarica 19. Archaeological Institute of the Hungarian Academy of Sciences, Budapest, pp 115–126

[116]

Svendsen JI, Alexanderson H, Astakhov VI, Demidov I, Dowdeswell JA, Funder S, Stein R. Late Quaternary ice sheet history of northern Eurasia. Quat Sci Rev, 2004, 23: 1229-1271.

[117]

Taberlet P, Fumagalli L, Wust-Saucy AG, Cosson JF. Comparative phylogeography and postglacial colonization routes in Europe. Mol Ecol, 1998, 7: 453-464.

[118]

Tipping R, Ashmore P, Davies A, Haggart BA, Moir A, Newton A, Tisdall E. Peat, pine stumps and people: interactions behind climate, vegetation change and human activity in wetland archaeology at Loch Farlary, northern Scotland. Soc Antiqu Scotl, 2007, 18: 157-164.

[119]

Tipping R, Ashmore P, Davies AL, Haggart BA, Moir A, Newton A, Tisdall E. Prehistoric Pinus woodland dynamics in an upland landscape in northern Scotland: the roles of climate change and human impact. Veg Hist Archaeobot, 2008, 17: 251-267.

[120]

Tollefsrud MM, Kissling R, Gugerli F Genetic consequences of glacial survival and postglacial colonization in Norway spruce: combined analysis of mitochondrial DNA and fossil pollen. Mol Ecol, 2008, 17: 4134-4150.

[121]

Tóth EGy, Vendramin GG, Bagnoli F, Cseke K, Höhn M. High genetic diversity and distinct origin of recently fragmented Scots pine (Pinus sylvestris L.) populations along the Carpathians and the Pannonian Basin. Tree Genet Genomes, 2017 13 2 41

[122]

Turna I. Variation of some morphological and electrophoretic characters of 11 populations of Scots pine in Turkey. Isr J Plant Sci, 2003, 51: 223-230.

[123]

Turna I, Güney D. Altitudinal variation of some morphological characters of Scots pine (Pinus sylvestris L.) in Turkey. Afr J Biotechnol, 2008, 8: 202-208.

[124]

Tutin TG, Heywood VH, Burges NA, Valentine DH, Walters SM, Webb DA. Flora europea, vol I, 1964, Cambridge: Cambridge University Press 34 35

[125]

Vendramin GG, Lelli L, Rossi P, Morgante M. A set of primers for amplification of 20 chloroplast microsatellites in Pinaceae. Mol Ecol, 1996, 5: 595-598.

[126]

Vendramin GG, Anzidei M, Madaghiele A, Sperisen C, Bucci G. Chloroplast microsatellite analysis reveals the presence of population subdivision in Norway spruce (Picea abies K.). Genome, 2000, 43: 68-78.

[127]

Wachowiak W, Balk P, Savolainen O. Search for nucleotide diversity patterns of local adaptation in dehydrins and other cold-related candidate genes in Scots pine (Pinus sylvestris L.). Tree Genet Genomes, 2009, 5: 117-132.

[128]

Wachowiak W, Salmela MJ, Ennos RA, Iason G, Cavers S. High genetic diversity at the extreme range edge: nucleotide variation at nuclear loci in Scots pine (Pinus sylvestris L.) in Scotland. Heredity, 2011, 106: 775-787.

[129]

Wakasugi T, Tsudzuki J, Ito S, Nakashima K, Tsudzuki T, Sugiura M. Loss of all ndh genes as determined by sequencing the entire chloroplast genome of the black pine Pinus thunbergii. Proc Natl Acad Sci USA, 1994, 92: 7759-7763.

[130]

Walker MJC. Climatic changes in Europe during the last glacial/interglacial transition. Quat Int, 1995, 28: 63-76.

[131]

Watts WA. Haworth EY, Lund JWG. The Holocene vegetation of the Burren, western Ireland. Lake sediment and environmental history, 1984, Leicester: Leicester University Press 359 376

[132]

Watts WA. Edwards KJ, Warren WP. Quaternary vegetation cycles. The quaternary history of Ireland, 1988, London: Academic Press 155 184

[133]

White G, Powell W. Isolation and characterization of microsatellite loci in Swietenia humilis (Meliaceae): an endangered tropical hardwood species. Mol Ecol, 1997, 6: 851-860.

[134]

Willis KJ, Bennett KD, Birks HJB. Richardson DM. The late Quaternary dynamics of pines in Europe. Ecology and biogeography of Pinus, 1998, Cambridge: Cambridge University Press 107 121

[135]

Willis KJ, Rudner E, Sümegi P. The full-glacial forests of central and southeastern Europe. Quat Res, 2000, 53: 203-213.

[136]

Wójkiewicz B, Wachowiak W. Substructuring of Scots pine in Europe based on polymorphism at chloroplast microsatellite loci. Flora, 2016, 220: 142-149.

[137]

Wolfe KH, Li WH, Sharp PM. Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc Natl Acad Sci, 1987, 84: 9054-9058.

[138]

Zhou Y, Bui T, Auckland LD, Williams CG. Undermethylated DNA as a source of microsatellites from a conifer genome. Genome, 2002, 45: 91-99.

[139]

Zhou FY, Abbott RJ, Jiang ZY, Du FK, Milne RI, Liu JQ. Gene flow and species delimitation: a case study of two pine species with overlapping distributions in southeast China. Evolution, 2010, 64: 2342-2352.

AI Summary AI Mindmap
PDF

120

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/