Automated tree detection and crown delineation using airborne laser scanner data in heterogeneous East-Central Europe forest with different species mix

Róbert Smreček , Ivan Sačkov , Zuzana Michňová , Ján Tuček

Journal of Forestry Research ›› 2017, Vol. 28 ›› Issue (5) : 1049 -1059.

PDF
Journal of Forestry Research ›› 2017, Vol. 28 ›› Issue (5) : 1049 -1059. DOI: 10.1007/s11676-017-0378-7
Original Paper

Automated tree detection and crown delineation using airborne laser scanner data in heterogeneous East-Central Europe forest with different species mix

Author information +
History +
PDF

Abstract

Identifying tree locations is a basic step in the derivation of other tree parameters using remote sensing techniques, particularly when using airborne laser scanning. There are several techniques for identifying tree positions. In this paper, we present a raster-based method for determining tree position and delineating crown coverage. We collected data from nine research plots that supported different mixes of species. We applied a raster-based method to raster layers with six different spatial resolutions and used terrestrial measurement data as reference data. Tree identification at a spatial resolution of 1.5 m was demonstrated to be the most accurate, with an average identification ratio (IR) of 95% and average detection ratio of 68% being observed. At a higher spatial resolution of 0.5 m, IR was overestimated by more than 600%. At a lower spatial resolution of 3 m, IR was underestimated at less than 44% of terrestrial measurements. The inventory process was timed to enable evaluation of the time efficiency of automatic methods.

Keywords

Airborne laser scanning / East-Central Europe / Individual tree / Mixed forest / Tree crown delineation

Cite this article

Download citation ▾
Róbert Smreček, Ivan Sačkov, Zuzana Michňová, Ján Tuček. Automated tree detection and crown delineation using airborne laser scanner data in heterogeneous East-Central Europe forest with different species mix. Journal of Forestry Research, 2017, 28(5): 1049-1059 DOI:10.1007/s11676-017-0378-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

ArcGIS help. Accessed Jun 2015. http://resources.arcgis.com/en/help/main/10.2/

[2]

Andersen HE, Reutebuch SE, McGaughey RJ. A rigorous assessment of tree height measurements obtained using airborne lidar and conventional field methods. Can J Remote Sens, 2006, 32(5): 355-366.

[3]

Balenović I, Alberti G, Marjanović H. Airborne laser scanning—the status and perspectives for the application in the south-east European forestry. South-East Eur For, 2013, 4(2): 59-79.

[4]

Heurich M. Automatic recognition and measurement of single trees based on data from airborne laser scanning over the richly structured natural forests of the Bavarian Forest National Park. For Ecol Manag, 2008, 255(7): 2416-2433.

[5]

Höfle B, Mücke W, Dutter M, Rutzinger M, Dorninger P (2009) Detection of building regions using airborne LiDAR—a new combination of raster and point cloud based GIS methods. In: Proceedings of GI_Forum 2009—international conference on applied geoinformatics, July 2009, Austria, pp 66–75

[6]

Hollaus M, Wagner W, Molnar G, Mandlburger G, Nothegger C, Otepka J (2010) Delineation of vegetation and building polygons from full-waveform airborne lidar data using OPALS software. In Geospatial data and geovisualization: environment, security, and society, special joint symposium of ISPRS technical commission IV and AutoCarto 2010 in conjunction with ASPRS/GaGIS speciality conference, November 2010, Florida

[7]

Hyyppä J, Kelle O, Lehikoinen M, Inkinen M. A segmentation-based method to retrieve stem volume estimates from 3-dimensional tree height models produced by laser scanner. IEEE Trans Geosci Remote Sens, 2001, 39: 969-975.

[8]

Hyyppä J, Schardt M, Haggrén H, Koch B, Lohr U, Scherrer HU, Paananen R, Luukkonen H, Ziegler M, Hyyppä H, Pyysalo U, Friedländer H, Uuttera J, Wagner S, Inkinen M, Wimmer A, Kukko A, Ahokas A, Karjalainen M. HIGH-SCAN: the first European-wide attempt to derive single-tree information from laserscanner data. Photogramm J Finl, 2001, 18: 43-53.

[9]

Hyyppä J, Yu X, Hyyppä H, Maltamo M (2006) Methods of airborne laser scanning for forest information extraction. In: Workshop on 3D remote sensing in forestry, 14–15 Feb 2006, Vienna

[10]

Hyyppä J, Hyyppä H, Xiaowei Y, Kaartinen H, Kukko A, Holopainen M (2009) Forest inventory using small-footprint airborne LiDAR. In: Topographic laser ranging and scanning: principles and processing. CRC Press, Boca Raton, pp 335–370

[11]

Jing L, Hu B, Li J, Noland T. Automated individual tree crown delineation from LiDAR data using morphological techniques. IOP Conf Ser Earth Environ Sci, 2014

[12]

Kaartinen H, Hyyppä J (2008) EuroSDR/ISPRS commission II project: tree extraction—final report. Official publication no. 53. EuroSDR, Frankfurt am Main, Germany. Accessed July 2015. http://bono.hostireland.com/~eurosdr/publications/53.pdf

[13]

Kaartinen H, Hyyppä J, Yu X, Vastaranta M, Hyyppä H, Kukko A, Holopainen M, Heipke Ch, Hirschmugl M, Mosdorf F, Næsset E, Pitkänen J, Popescu S, Solberg S, Wolf BM, Wu JCh. An international comparison of individual tree detection and extraction using airborne laser scanning. Remote Sens, 2012, 4: 950-974.

[14]

Khosravipour A, Skidmore AK, Wang T, Isenburg M, Khoshelham K. Effect of slope on treetop detection using a LiDAR canopy height model. ISPRS J Photogramm Remote Sens, 2015, 104: 44-52.

[15]

Korpela I, Dahlin B, Schäfer H, Bruun E, Haapaniemi F, Honkasalo J, Ilvesniemi S, Kuutti V, Linkosalmi M, Mustonen J, Salo M, Suomi O, Virtanen H (2007) Single-tree forest inwentory using LIDAR and aerial images for 3D treetop positioning, species recognition, height and crown width estimation. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 36(3/W52):227–233

[16]

Maas HG (2013) Forestry applications. In: Airborne and terrestrial laser scanning. Whittles Publishing, Dunbeath, pp 213–235

[17]

Majlingová A (2006) Forestry applications of digital image analysis of RS data with high spatial resolution. Technical University in Zvolen, Zvolen (in Slovak)

[18]

Majlingová A, Smreček R, Mozoľová Z (2009) Automatized tree crown extraction in relationship to spatial resolution of the image. In: GIS Ostrava 2009

[19]

Maltamo M, Mustonen K, Hyyppä J, Pitkanen J, Yu X. The accuracy of estimating individual tree variables with airborne laser scanning in boreal nature reserve. Can J For Res, 2004, 34: 1791-1801.

[20]

Mandlburger G, Otepka J, Karel W, Wagner W, Pfeifer N (2009) Orientation and processing of airborne laser scanning data (OPALS)—concept and first results of a comprehensive ALS software. In: ISPRS Workshop Laserscanning 2009. September 2009, France

[21]

Mikita T, Klimánek M, Cibulka M. Evaluation of Airborne laser scanning data for tree parameters and terrain modelling in forest environment. Acta Univ Agric Silvic Mendel Brun LXI, 2013, 5: 1339-1347.

[22]

OPALS Manual. Accessed Jun 2015. http://geo.tuwien.ac.at/opals/html/index.html

[23]

Otepka J, Briese C, Nothegger C (2006) First steps to a topographic information system of the next generation. In: Symposium of ISPRS commission IV—geo spatial databases for sustainable development, September 2006, India

[24]

Pitkänen J, Maltamo M, Hyyppä J, Yu X. 2004. Adaptive methods for individual tree detection on airborne laser based canopy height model. In: Proceedings of ISPRS workshop laser-scanners for forest and landscape assessment, 3–6 October 2004, Freiburg, Germany. Accessed Jun 2015. http://www.isprs.org/proceedings/XXXVI/8-W2/PITKAENEN.pdf

[25]

Pouliot DA, King DJ, Bell FW, Pitt DG. Automated tree crown detection and delineation in high-resolution digital camera imagery of coniferous forest regeneration. Remote Sens Environ, 2002, 82: 322-334.

[26]

Pouliot DA, King DJ, Pitt DG. Development and evaluation of an automated tree detection–delineation algorithm for monitoring regenerating coniferous forests. Can J For Res, 2005, 35: 2332-2345.

[27]

Reitberger J, Heurich M, Krzystek P, Stilla U. 2007. Single tree detection in forest areas with high-density LiDAR data. In: International archives of photogrammetry, remote sensing and spatial information science, 36(3/W49B):139–145

[28]

Šmelko Š (2000) Forest mensuration. Technical University in Zvolen, Zvolen (in Slovak)

[29]

Smreček R (2013) Inventory of city green using airborne laser scanning. In: GIS Ostrava 2013, January 2013, Czech Republic (in Slovak)

[30]

Smreček R, Sačkov I (2013) Utilization of airborne laser scanning for forest border delineation and forest stand vertical structure. In: GIS Ostrava 2013, January 2013, Czech Republic (in Slovak)

[31]

Solberg S, Naesset E, Bollandsas OM. Single tree segmentation using airborne laser scanner data in a structurally heterogeneous spruce forest. Photogramm Eng Remote Sens, 2006, 72(12): 1369-1378.

[32]

Stereńczak K. Factors influencing individual tree crowns detection based on airborne laser scanning data. For Res Pap, 2013, 74(4): 323-333.

[33]

Stereńczak K, Miścicki S (2012) Crown delineation influence on standing volume calculations in protected area. In: International archives of the photogrammetry, remote sensing and spatial information sciences, Vol XXXiX-B8. XXII ISPRS congress, 25 August–01 September 2012, Melbourne, Australia

[34]

Strîmbu VF, Strîmbu BM. A graph-based segmentation algorithm for tree crown extraction using airborne LiDAR data. ISPRS J Photogramm Remote Sens, 2015, 104: 30-43.

[35]

Vastaranta M, Kankare V, Holopainen M, Yu X, Hyyppä J, Hyyppä H. Combination of individual tree detection and area-based approach in imputation of forest variables using airborne laser data. ISPRS J Photogramm, 2012, 67: 73-79.

[36]

Vauhkonen J, Ene L, Gupta S, Heinzel J, Holmgren J, Pitkänen J, Solberg S, Wang Y, Weinacker H, Hauglin KM, Lien V, Packalén P, Gobakken T, Koch B, Næsset E, Tokola T, Maltamo M. Comparative testing of single-tree detection algorithms under different types of forest. Forestry, 2012, 85(1): 27-40.

[37]

Yu X, Hyyppä J, Vastaranta M, Holopainen M, Viitala R. Predicting individual tree attributes from airborne laser point clouds based on random forests technique. ISPRS J Photogramm, 2011, 66: 28-37.

[38]

Žíhlavník Š, Scheer Ľ. 2000. Remote sensing of the Earth in forestry. Technical University in Zvolen, Zvolen (in Slovak)

AI Summary AI Mindmap
PDF

128

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/