Complex regulatory network of Betula BplSPL8 in planta

Chuang Liu , Minxiao Guan , Xiaoqing Hu , Jing Tian , Xuemei Liu

Journal of Forestry Research ›› 2017, Vol. 28 ›› Issue (5) : 881 -889.

PDF
Journal of Forestry Research ›› 2017, Vol. 28 ›› Issue (5) : 881 -889. DOI: 10.1007/s11676-017-0372-0
Original Paper

Complex regulatory network of Betula BplSPL8 in planta

Author information +
History +
PDF

Abstract

SQUAMOSA-promoter binding protein-like (SPL) proteins are plant-specific transcription factors and participate in different pathways, including the vegetative to reproductive transition, male sterility, biosynthesis of gibberellic acid (GA), plant morphogenesis and response to environmental stress. In this study, we generated transgenic Arabidopsis that overexpressed Betula BplSPL8 and confirmed that BplSPL8 is a transcription factor with transcriptional activation activity and is located in the nucleus. Functional analysis of BplSPL8 showed that it is involved in regulating different development processes: (1) BplSPL8 can delay flowering by reducing sensitivity to GA under short days; (2) BplSPL8 controls the number and morphogenesis of leaves, including up-rolling leaves under long days and folded leaves mediated by GA under short days; (3) BplSPL8 can promote root elongation during late development of roots and inhibit lateral root formation; (4) BplSPL8 may be involved in regulating carotenoid biosynthesis and secretion metabolism. These results show that there is a complex regulatory network for the SPL family genes that is mediated by other components and may provide a new insights for the functional research of SPL genes.

Keywords

Birch / Root / SQUAMOSA-promoter binding protein-like / Transgenic / Carotenoid

Cite this article

Download citation ▾
Chuang Liu, Minxiao Guan, Xiaoqing Hu, Jing Tian, Xuemei Liu. Complex regulatory network of Betula BplSPL8 in planta. Journal of Forestry Research, 2017, 28(5): 881-889 DOI:10.1007/s11676-017-0372-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Arazi T, Talmor-Neiman M, Stav R, Riese M, Huijser P, Baulcombe DC. Cloning and characterization of micro-RNAs from moss. Plant J, 2005, 43(6): 837-848.

[2]

Cardon GH, Hohmann S, Nettesheim K, Saedler H, Huijser P. Functional analysis of the Arabidopsis thaliana SBP-box gene SPL3: a novel gene involved in the floral transition. Plant J, 1997, 12(2): 367-377.

[3]

Cardon G, Hohmann S, Klein J, Nettesheim K, Saedler H, Huijser P. Molecular characterisation of the Arabidopsis SBP-box genes. Gene, 1999, 237(1): 91-104.

[4]

Chang S, Puryear J, Cairney J. A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Rep, 1993, 2(11): 113-116.

[5]

Clough SJ, Bent AF. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J, 1998, 16(6): 735-743.

[6]

Dinneny JR, Benfey PN. Plant stem cell niches: standing the test of time. Cell, 2008, 132(4): 553-557.

[7]

Gayomba SR, Jung HI, Yan J, Danku J, Rutzke MA, Bernal M, Kramer U, Kochian LV, Salt DE, Vatamaniuk OK. The CTR/COPT-dependent copper uptake and SPL7-dependent copper deficiency responses are required for basal cadmium tolerance in A. thaliana. Metallomics, 2013, 5(9): 1262-1275.

[8]

Jung JH, Ju Y, Seo PJ, Lee JH, Park CM. The SOC1-SPL module integrates photoperiod and gibberellic acid signals to control flowering time in Arabidopsis. Plant J, 2012, 69(4): 577-588.

[9]

Keller CP, Van Volkenburgh E. Auxin-induced epinasty of tobacco leaf tissues (a nonethylene-mediated response). Plant Physiol, 1997, 113(2): 603-610.

[10]

Klein J, Saedler H, Huijser P. A new family of DNA binding proteins includes putative transcriptional regulators of the Antirrhinum majus floral meristem identity gene SQUAMOSA. Mol Gen Genet, 1996, 250(1): 7-16.

[11]

Krizek BA, Lewis MW, Fletcher JC. RABBIT EARS is a second-whorl repressor of AGAMOUS that maintains spatial boundaries in Arabidopsis flowers. Plant J, 2006, 45(3): 369-383.

[12]

Li C, Lu S. Molecular characterization of the SPL gene family in Populus trichocarpa. BMC Plant Biol, 2014, 14: 131.

[13]

Li S, Yang X, Wu F, He Y. HYL1 controls the miR156-mediated juvenile phase of vegetative growth. J Exp Bot, 2012, 63(7): 2787-2798.

[14]

Li J, Hou H, Li X, Xiang J, Yin X, Gao H, Zheng Y, Bassett CL, Wang X. Genome-wide identification and analysis of the SBP-box family genes in apple (Malus x domestica Borkh.). Plant Physiol Biochem, 2013, 70: 100-114.

[15]

Liu X, Yang C. Temporal characteristics of developmental cycles of female and male flowers in Betula platyphylla in Northeastern China. Sci Silvaec Sin, 2006, 42(12): 28-32.

[16]

Macdonald AD, Mothersill DH. Shoot development in Betula papyrifera. VI. Development of the reproductive structures. Can J Bot, 1987, 65(3): 466-475.

[17]

Malamy JE, Benfey PN. Organization and cell differentiation in lateral roots of Arabidopsis thaliana. Development, 1997, 124(1): 33-44.

[18]

Nagpal P, Walker LM, Young JC, Sonawala A, Timpte C, Estelle M, Reed JW. AXR2 encodes a member of the Aux/IAA protein family. Plant Physiol, 2000, 123(2): 563-574.

[19]

Nath U, Crawford BC, Carpenter R, Coen E. Genetic control of surface curvature. Science, 2003, 299(5611): 1404-1407.

[20]

Osmont KS, Sibout R, Hardtke CS. Hidden branches: developments in root system architecture. Annu Rev Plant Biol, 2007, 58: 93-113.

[21]

Palatnik JF, Allen E, Wu X, Schommer C, Schwab R, Carrington JC, Weigel D. Control of leaf morphogenesis by microRNAs. Nature, 2003, 425(6955): 257-263.

[22]

Peret B, De Rybel B, Casimiro I, Benkova E, Swarup R, Laplaze L, Beeckman T, Bennett MJ. Arabidopsis lateral root development: an emerging story. Trends Plant Sci, 2009, 14(7): 399-408.

[23]

Sabatini S, Heidstra R, Wildwater M, Scheres B. SCARECROW is involved in positioning the stem cell niche in the Arabidopsis root meristem. Genes Dev, 2003, 17(3): 354-358.

[24]

Salinas M, Xing S, Hohmann S, Berndtgen R, Huijser P. Genomic organization, phylogenetic comparison and differential expression of the SBP-box family of transcription factors in tomato. Planta, 2012, 235(6): 1171-1184.

[25]

Schwarz S, Grande AV, Bujdoso N, Saedler H, Huijser P. The microRNA regulated SBP-box genes SPL9 and SPL15 control shoot maturation in Arabidopsis. Plant Mol Biol, 2008, 67(1–2): 183-195.

[26]

Shikata M, Koyama T, Mitsuda N, Ohme-Takagi M. Arabidopsis SBP-box genes SPL10, SPL11 and SPL2 control morphological change in association with shoot maturation in the reproductive phase. Plant Cell Physiol, 2009, 50(12): 2133-2145.

[27]

Stone JM, Liang X, Nekl ER, Stiers JJ. Arabidopsis AtSPL14, a plant-specific SBP-domain transcription factor, participates in plant development and sensitivity to fumonisin B1. Plant J, 2005, 41(5): 744-754.

[28]

Taylor-Teeples M, Lin L, de Lucas M, Turco G, Toal TW, Gaudinier A, Young NF, Trabucco GM, Veling MT, Lamothe R, Handakumbura PP, Xiong G, Wang C, Corwin J, Tsoukalas A, Zhang L, Ware D, Pauly M, Kliebenstein DJ, Dehesh K, Tagkopoulos I, Breton G, Pruneda-Paz JL, Ahnert SE, Kay SA, Hazen SP, Brady SM. An Arabidopsis gene regulatory network for secondary cell wall synthesis. Nature, 2015, 517(7536): 571-575.

[29]

Toledo-Ortiz G, Huq E, Rodriguez-Concepcion M. Direct regulation of phytoene synthase gene expression and carotenoid biosynthesis by phytochrome-interacting factors. Proc Natl Acad Sci USA, 2010, 107(25): 11626-11631.

[30]

Tucker MR, Laux T. Connecting the paths in plant stem cell regulation. Trends Cell Biol, 2007, 17(8): 403-410.

[31]

Tuskan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N, Ralph S, Rombauts S, Salamov A, Schein J, Sterck L, Aerts A, Bhalerao RR, Bhalerao RP, Blaudez D, Boerjan W, Brun A, Brunner A, Busov V, Campbell M, Carlson J, Chalot M, Chapman J, Chen GL, Cooper D, Coutinho PM, Couturier J, Covert S, Cronk Q, Cunningham R, Davis J, Degroeve S, Dejardin A, Depamphilis C, Detter J, Dirks B, Dubchak I, Duplessis S, Ehlting J, Ellis B, Gendler K, Goodstein D, Gribskov M, Grimwood J, Groover A, Gunter L, Hamberger B, Heinze B, Helariutta Y, Henrissat B, Holligan D, Holt R, Huang W, Islam-Faridi N, Jones S, Jones-Rhoades M, Jorgensen R, Joshi C, Kangasjarvi J, Karlsson J, Kelleher C, Kirkpatrick R, Kirst M, Kohler A, Kalluri U, Larimer F, Leebens-Mack J, Leple JC, Locascio P, Lou Y, Lucas S, Martin F, Montanini B, Napoli C, Nelson DR, Nelson C, Nieminen K, Nilsson O, Pereda V, Peter G, Philippe R, Pilate G, Poliakov A, Razumovskaya J, Richardson P, Rinaldi C, Ritland K, Rouze P, Ryaboy D, Schmutz J, Schrader J, Segerman B, Shin H, Siddiqui A, Sterky F, Terry A, Tsai CJ, Uberbacher E, Unneberg P, Vahala J, Wall K, Wessler S, Yang G, Yin T, Douglas C, Marra M, Sandberg G, Van de Peer Y, Rokhsar D. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science, 2006, 313(5793): 1596-1604.

[32]

Unte US, Sorensen AM, Pesaresi P, Gandikota M, Leister D, Saedler H, Huijser P. SPL8, an SBP-box gene that affects pollen sac development in Arabidopsis. Plant Cell, 2003, 15(4): 1009-1019.

[33]

Welsch R, Maass D, Voegel T, Dellapenna D, Beyer P. Transcription factor RAP2.2 and its interacting partner SINAT2: stable elements in the carotenogenesis of Arabidopsis leaves. Plant Physiol, 2007, 145(3): 1073-1085.

[34]

Xing S, Salinas M, Hohmann S, Berndtgen R, Huijser P. miR156-targeted and nontargeted SBP-box transcription factors act in concert to secure male fertility in Arabidopsis. Plant Cell, 2010, 22(12): 3935-3950.

[35]

Yamasaki K, Kigawa T, Inoue M, Tateno M, Yamasaki T, Yabuki T, Aoki M, Seki E, Matsuda T, Nunokawa E, Ishizuka Y, Terada T, Shirouzu M, Osanai T, Tanaka A, Seki M, Shinozaki K, Yokoyama S. A novel zinc-binding motif revealed by solution structures of DNA-binding domains of Arabidopsis SBP-family transcription factors. J Mol Biol, 2004, 337(1): 49-63.

[36]

Yamasaki H, Hayashi M, Fukazawa M, Kobayashi Y, Shikanai T. SQUAMOSA promoter binding protein-Like7 is a central regulator for copper homeostasis in arabidopsis. Plant Cell, 2009, 21(1): 347-361.

[37]

Yu N, Cai WJ, Wang S, Shan CM, Wang LJ, Chen XY. Temporal control of trichome distribution by microRNA156-targeted SPL genes in Arabidopsis thaliana. Plant Cell, 2010, 22(7): 2322-2335.

[38]

Yu S, Galvao VC, Zhang YC, Horrer D, Zhang TQ, Hao YH, Feng YQ, Wang S, Schmid M, Wang JW. Gibberellin regulates the Arabidopsis floral transition through miR156-targeted SQUAMOSA promoter binding-like transcription factors. Plant Cell, 2012, 24(8): 3320-3332.

[39]

Yu N, Niu QW, Ng KH, Chua NH. The role of miR156/SPLs modules in Arabidopsis lateral root development. Plant J, 2015, 83(4): 673-685.

[40]

Zhang Y, Schwarz S, Saedler H, Huijser P. SPL8, a local regulator in a subset of gibberellin-mediated developmental processes in Arabidopsis. Plant Mol Biol, 2007, 63(3): 429-439.

[41]

Zhang Y, Gao Y, Wang Z, Han Y, Zheng D, He J. Lateral root development of related genes in Arabidopsis thaliana. J Heilongjiang Bayi Agric Univ, 2015, 27(4): 19-24.

AI Summary AI Mindmap
PDF

133

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/