Water quality in forest and village ponds in Burkina Faso (western Africa)

Bilassé Zongo , Frédéric Zongo , Aboubacar Toguyeni , Joseph I. Boussim

Journal of Forestry Research ›› 2017, Vol. 28 ›› Issue (5) : 1039 -1048.

PDF
Journal of Forestry Research ›› 2017, Vol. 28 ›› Issue (5) : 1039 -1048. DOI: 10.1007/s11676-017-0369-8
Original Paper

Water quality in forest and village ponds in Burkina Faso (western Africa)

Author information +
History +
PDF

Abstract

Forest ecosystems help conserve the quality of water resources in aquatic habitats. The conservation of biological diversity in aquatic and terrestrial ecosystems remains a communal concern. Aquatic ecosystems and resources are vulnerable but can be preserved and protected by forests. In sub-Saharan regions of Africa, water from ecosystems such as ponds still play important role in the livelihood of local populations. Water from temporary ponds is used by local populations for multiple needs; however, in this part of the world, the population is increasing, thus increasing human needs and activities and land use in the region. Land-use changes lead to deforestation, land degradation and the decline in freshwater, affecting human health and well-being. Forest degradation leads to the decline in ecosystem goods and services, particularly those related to watersheds. This study conducted in eastern Burkina Faso aimed to assess water quality of temporary ponds in protected forest areas (reserves) and surrounding villages. It was conducted in 61 temporary ponds where physical, chemical and biological variables were measured, such as water surface area, depth, transparency, macrophyte cover, pH, dissolved O2, conductivity, nutrient concentrations and algae biomass. The results showed that at p < 5%, water surface area (p = 0.02), depth (p = 0.00), nutrient content (p = 0.00), and algae biomass (p = 0.04) were significantly higher outside reserves than inside reserves. In contrast, macrophyte cover (mean cover percentages 53 vs. 44.5%) and water transparency (p = 0.02) were higher inside reserves. The variations in conductivity and pH were not significant. All trends showed the influences of human activities on water characteristics and the role forests and land cover had in preventing negative human impacts and disturbance of temporary ponds. Forests and land cover are important to water quality conservation and algae biomass regulation in temporary ponds. Protecting and managing forests is therefore an essential part of future strategies for limiting algal blooms and their negative consequences, maintaining water quality and providing clean water to citizens.

Keywords

Ecosystem services / Pond water / Reserves / Variables / Western Africa

Cite this article

Download citation ▾
Bilassé Zongo, Frédéric Zongo, Aboubacar Toguyeni, Joseph I. Boussim. Water quality in forest and village ponds in Burkina Faso (western Africa). Journal of Forestry Research, 2017, 28(5): 1039-1048 DOI:10.1007/s11676-017-0369-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Barnes MC, Todd AH, Whitney Lilja R, Barten PK. Forests, water and people: drinking water supply and forest lands in the Northeast and Midwest United States, 2009, Northeastern Area State and Private Forestry: USDA Forest science 71

[2]

Brower J, Zar J. Field and laboratory methods for general ecology, 1997 4 New York: Brown Company Publishers 51

[3]

Calder IR. Forests and water—ensuring forest benefits outweight water costs. For Ecol Manage, 2007, 251: 110-120.

[4]

Calder IR, Hofer T, Vermont S, Warren P. Towards a new understanding of forests and water. Unasylva, 2007, 229(58): 3-10.

[5]

Dudley N, Stolton S. Running pure: the importance of forest protected areas to drinking water, 2003, London: Alliance for Forest Conservation and Sustainable 114

[6]

FAO. Forests and water, 2008, Rome: Fao forestry paper 78

[7]

Fiquefron J, Garcia S, Stenger A. Land use impact on water quality: valuing forest services in terms of the water supply sector. J Environ Manage, 2013, 126: 113-121.

[8]

Freeman J, Madsen R, Hart K. Statistical analysis of drinking, water treatment plant costs, source water quality, and land cover characteristics, 2007, San Francisco: Trust for Public Land White Paper 30

[9]

Furniss MJ, Staab BP, Hazelhurst S, Clifton CF, Roby KB, Ilhadrt BL, Larry EB, Todd AH, Reid LM, Hines SJ, Bennett KA, Luce CH, Edwards PJ. Water, climate change, and forest: watershed stewardship for a changing climate, 2010, Corvallis: Pacific Northwest Research Station 75

[10]

Gnoumou A, Bognounou F, Hahn K, Thiombiano A. Woody plant diversity and stand structure in the Comoe-Leraba reserve, southwestern Burkina Faso (West Africa). J Biol Sci, 2011, 11: 111-123.

[11]

Hart BT, Maher B, Lawrence I. New generation water quality guidelines for ecosystem protection. Freshw Biol, 1999, 41: 347-359.

[12]

Johnson B, Bachelar-Nicaulo P, Okibe N, Thomas A, Hallberg KB. Ferrimicrobium acidiphilum gen. nov., sp. nov. and Ferrithrix thermotolerans gen. nov., sp. nov.: heterotrophic, iron-oxidizing, extremely acidophilic actinobacteria. Int J Syst Evol Microbiol, 2009, 59: 1082-1089.

[13]

Kemker C (2014) Turbidity, total suspended solids and water clarity—environmental measurement systems. http://www.fondriest.com/environmental-measurements/parameters/water-quality/turbidity-total-suspended-solids-water-clarity/. Accessed 07 Nov 2016

[14]

Kibena J, Nhapi I, Gumindoga W. Assessing the relationship between water quality parameters and changes in landuse patterns in the Upper Manyame River, Zimbabwe. Phys Chem Earth, 2014, 67–69: 153-163.

[15]

Kouri T, Gyory A, Rowan RM. ISLH recommended reference procedure for the enumeration of particles in urine. Int J Lab Hematol, 2003, 9: 58-63.

[16]

Leflaive J, Ten-Hage L. Algal and cyanobacterial secondary metabolites in freshwaters: a comparison of allelopathic compounds and toxins. Freshw Biol, 2007, 52: 199-214.

[17]

Levin N, Watson JEM, Joseph LN, Grantham HS, Hadar L, Apel N, Perevolot-sky A, DeMalach N, Possingham HP, Kark S. A framework for systematic, conservation planning and management of Mediterranean landscapes. Biol Conserv, 2013, 158: 371-383.

[18]

Mbayngone E, Thiombiano A, Hahn-Hadjali K, Guinko S. Magnoliophyta of the partial faunal reserve of Pama, Burkina Faso. Check List, 2008, 4(3): 251-266.

[19]

Mbayngone E, Thiombiano A, Hahn-Hadjali K, Guinko S. Caractéristiques écologiques de la végétation ligneuse du sud-est du Burkina Faso (Afrique de l’Ouest): le cas de la réserve de Pama. Candollea, 2008, 63(1): 17-33.

[20]

MEA. Ecosystems and human well-being: biodiversity synthesis, 2005, Washington: DC, Island Press 86

[21]

Mukhopadhyay P, Mondal D, Biswas P, Dewanji A. Water quality monitoring of tropical ponds: location and depth effect in two case studies. Acta Hydrochim Hydrobiol, 2004, 32(2): 138-148.

[22]

Nacoulma BMI, Katharina S, Traoré S, Bernhardt-Romermann M, Hahn K, Wittig R, Thiombiano A. Impacts of land-use on West African savanna vegetation: a comparison between protected and communal area in Burkina Faso. Biodivers Conserv, 2011, 20(14): 3341-3362.

[23]

Natta AK. Ecological assessment of riparian forests in Benin: phytodiversity, phytosociology and spatial distribution of tree species, 2003, Wageningen: Wageningen University 215

[24]

N’Diaye OK, Diémé S (2004) Etude sur la situation et l’évolution des systèmes de V/A forestière en Afrique sahélienne: Etude de cas sur le Sénégal. http://www.fao.org/docrep/009/j2623f/J2623F08.html. Accessed 07 Nov 2016

[25]

Ouédraogo O, Thiombiano A, Hahn-Hadjali K, Guinko S. Diversité et structure des groupements ligneux du parc national d’Arly (Est du Burkina Faso). Flora et Vegetatio Sudano-Sambesica, 2008, 11: 5-16.

[26]

Ouédraogo I, Nacoulma BMI, Hahn K, Thiombiano A. Assessing ecosystem services based on indigenous knowledge in south-eastern Burkina Faso (West Africa). Int J Biodivers Sci Ecosyst Serv Manag, 2014, 10(4): 313-321.

[27]

Pokorný J, Kvet J. Aquatic plants and lake ecosystems. The lakes handbook: limnology and limnetic ecology, 2004, Hoboken: Blackwell Publishing 309 340

[28]

Reynolds CS. Phytoplankton designer—or how to predict compositional responses to trophic-state change. Hydrobiologia, 2000, 424: 123-132.

[29]

Reynolds CS. The ecology of freshwater phytoplankton, 2006, Cambridge: Cambridge University Press 535

[30]

Savadogo S. les bois sacrés du Burkina Faso: diversité, structure, dimension spirituelle et mode de gestion de leurs ressources naturelles, 2013, Ouagadougou: University of Ouagadougou 280

[31]

Singh S, Mishra A. Deforestation induced costs on the drinking water supplies of the Mumbai metropolitan, India. Glob Environ Change, 2014, 27: 73-83.

[32]

Singh S, Mishra A. Spatiotemporal analysis of the effects of forest covers on stream water quality in Western Ghats of peninsular India. J Hydrol, 2014, 519: 214-224.

[33]

Thuiller W. Biodiversity, climate change and the ecologist. Nature, 2007, 448(2): 550-552.

[34]

Wéry M. Protozoologie médicale, 1995, Bruxelles: Agence Universitaire de la francophonie 276

[35]

Yanogo M (2006) Analyse des déterminants d’une gestion participative et durable des ressources forestières du Parc National Kaboré Tambi par les villages riverains (Burkina Faso). http://www.memoireonline.com/07/08/1350/m_analyse-determinants-gestion-participative-durable-ressources-parc-kabore-tambi6.html. Accessed 07 Nov 2016

[36]

Zhang Z, Wang L, Wang S. Forest hydrology research in China. Sci Soil Water Conserv, 2004, 2(2): 68-73.

[37]

Zhang B, Li W, Xie G, Xiao Y. Characteristics of water conservation of forest ecosystem in Beijing. Acta Ecol Sin, 2008, 28(11): 5619-5624.

[38]

Zhang B, Li W, Xie G, Xiao Y. Water conservation of forest ecosystem in Beijing and its value. Ecol Econ, 2010, 69: 1416-1426.

[39]

Zhang B, Xie G, Yan Y, Yang Y. Regional differences of water conservation in Beijing’s forest ecosystem. J For Res, 2011, 22(2): 295-300.

[40]

Zongo F. Inventaire et systématique des micro-algues dulçaquicole du réservoir de Bagré au Burkina Faso (Province du Boulgou), 2007, Ouagadougou: University of Ouagadougou 208

[41]

Zongo B. Communautés micro-algales dans les mares temporaires, interactions avec variables physico-chimiques et assemblage de têtards en Afrique de l’Ouest, 2011, Ouagadougou: University of Ouagadougou 192

[42]

Zongo B, Zongo F, Ouattara A, Boussim IJ. A taxonomic study of the genus Closterium Nitzsch (Zygnematophyceae, Streptophyta) in temporary ponds (Burkina Faso, West Africa). Cryptogam Algologie, 2011, 32(3): 255-270.

AI Summary AI Mindmap
PDF

198

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/