Molecular approach to determine taxonomic status of Septoria sp. causing leaf blotch of Castanea sativa in Hyrcanian forests

Hamed Yousefzadeh , Abbas Saidi , Somayeh Tayebi , Davoud Kartoolinejad , Reza Naghdi

Journal of Forestry Research ›› 2017, Vol. 28 ›› Issue (4) : 661 -670.

PDF
Journal of Forestry Research ›› 2017, Vol. 28 ›› Issue (4) : 661 -670. DOI: 10.1007/s11676-016-0363-6
Original Paper

Molecular approach to determine taxonomic status of Septoria sp. causing leaf blotch of Castanea sativa in Hyrcanian forests

Author information +
History +
PDF

Abstract

Castanea sativa is a valuable tree species in Hyrcanian forests, an evolutionary relict ecosystem whose communities suffer from overexploitation and fungal diseases. In the current study, three species delimitation methods were utilized with ITS regions sequencing to determine the taxonomic status of Septoria causing leaf blotch of C. sativa in Hyrcanian forests. The results indicated that the length of ITS region in the genus Septoria (extracted from GenBank) varied from 650 to 680 bp. There were almost three times more variable sites in ITS1 than in ITS2. The ITS2 secondary structure of Hyrcanian Septoria community had the highest similarity with Septoria castaneicola, except for some differences in helix II and III. Also, Hyrcanian samples had minimum genetic distances with S. castaneicola and maximum with Septoria quercicola. The maximum parsimony method divided the studied Septoria genus into three distinct clades, mostly located in clade I. Clade II consisted entirely of Septoria aciculosa, while clade III contained S. castaneicola as well as Hyrcanian samples.

Keywords

Septoria castaneicola / Hyrcanian forests / ITS secondary structure / Forest pathogen / Plylogeny of fungi / Sweet chestnut / Fagaceae

Cite this article

Download citation ▾
Hamed Yousefzadeh, Abbas Saidi, Somayeh Tayebi, Davoud Kartoolinejad, Reza Naghdi. Molecular approach to determine taxonomic status of Septoria sp. causing leaf blotch of Castanea sativa in Hyrcanian forests. Journal of Forestry Research, 2017, 28(4): 661-670 DOI:10.1007/s11676-016-0363-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abrinbana M, Mozafari J, Shams-bakhsh M, Mehrabi R. Resistance spectra of wheat genotypes and virulence patterns of Mycosphaerella graminicola isolates in Iran. Euphytica, 2012, 186: 75-90.

[2]

Azimi H, Abbasi M, Osipyan LL, Javadi-Estahbanati AR. Introducing some new species of Septoria for the Iranian mycobiota. Iran J Plant Pathol, 2012, 47: 341-351.

[3]

Bissegger M, Sieber TN. Assemblages of endophytic fungi in coppice shoots of Castanea sativa. Mycologia, 1994, 86: 648-655.

[4]

Chase MW, Salamin N, Wilkinson M, Dunwell JM, Kesanakurthi RP, Haidar N, Savolainen V. Land plants and DNA barcodes: short-term and long-term goals. Philos Trans R Soc B, 2005, 360: 1889-1895.

[5]

Coleman AW. ITS2 is a double-edged tool for eukaryote evolutionary comparisons. Trends Genet, 2003, 19: 370-375.

[6]

Crous PW, Groenewald JZ, Pongpanich K, Himaman W, Arzanlou M, Wingfield MJ. Cryptic speciation and host specificity among Mycosphaerella spp. occurring on Australian Acacia species grown as exotics in the tropics. Stud Mycol, 2004, 50: 457-469.

[7]

Dalvand M, Roohparvar R. Evaluation of Iranian wheat cultivars reaction to Septoria tritici blotch and virulence survey of Mycosphaerella graminicola in Khuzestan province. Int Res J Appl Basic Sci, 2013, 5: 1097-1100.

[8]

Dellaporta SL, Wood J, Hicks JB. A plant DNA minipreparation: version II. Plant Mol Biol Rep, 1983, 1: 19-21.

[9]

Doyle JJ, Doyle JL. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull, 1987, 19: 11-15.

[10]

Ellis MB, Ellis JP. Microfungi on land plants: an identification handbook, 1985, New York: Croom Helm.

[11]

Eyal Z. The Septoria tritici and Stagonospora nodorum blotch diseases of wheat. Eur J Plant Pathol, 1999, 105: 629-641.

[12]

Fatehi J, Hedjaroud GA, Ershad D. Study on the genus Septoria in Iran. Iran J Plant Pathol, 1993, 29: 53-75. (In Persian with English abstract)

[13]

Feau N, Bernier L. First report of shining willow as a host plant for Septoria musiva. Plant Dis, 2004, 88: 770-770.

[14]

Feau N, Hamelin RC, Bernier L. Attributes and congruence of three molecular data sets: inferring phylogenies among Septoria-related species from woody perennial plants. Mol Phylogenet Evol, 2006, 40: 808-829.

[15]

Feau N, Hamelin RC, Bernier L. Variability of nuclear SSU-rDNA group introns within Septoria species: incongruence with host sequence phylogenies. J Mol Evol, 2007, 64: 489-499.

[16]

Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 1985, 39: 783-791.

[17]

Fernández-López J, Alía R. Technical guidelines for genetic conservation and use for chestnut (Castanea sativa), 2003, Rome, Italy: International Plant Genetic Resources Institute.

[18]

Ghaneie A, Mehrabi R, Safaie N, Abrinbana M, Saidi A, Aghaee M. Genetic variation for resistance to Septoria tritici blotch in Iranian tetraploid wheat landraces. Eur J Plant Pathol, 2012, 132: 191-202.

[19]

Gottschling M, Plötner J. Secondary structure models of the nuclear internal transcribed spacer regions and 5.8 S rRNA in Calciodinelloideae (Peridiniaceae) and other dinoflagellates. Nucleic Acids Res, 2004, 32: 307-315.

[20]

Hollingsworth PM, Graham SW, Little DP. Choosing and using a plant DNA barcode. PLoS ONE, 2011, 6: e19254.

[21]

Hosseini SM, Kartoolinejad D, Mirnia SK, Tabibzadeh Z, Akbarinia M, Shayanmehr F. The European mistletoe effects on leaves and nutritional elements of two host species in Hyrcanian forests. Silva Lusitana, 2008, 16: 229-237.

[22]

Hüseyin E, Selçuk F. Coelomycetous fungi in several forest ecosystems of Black Sea provinces of Turkey. Agric For, 2014, 60: 19-32.

[23]

Jamali S. First report of Septoria silybi associated with leaf blotch of Silybum marianum from Iran. Plant Sci Today, 2015, 2: 21-23.

[24]

Johnson GP. Revision of Castanea sect. Balanocastanon (Fagaceae). J Arnold Arbor, 1988, 69: 25-49.

[25]

Karel GA (1958) A preliminary list of plant diseases in Turkey. Ayyıldız Matbaası, Ankara, 44 pp

[26]

Karimi Farsad L, Mardi M, Ebrahimi MA. Quantitative expression analysis of candidate genes for Septoria tritici blotch resistance in wheat (Triticum aestivum L.). Prog Biol Sci, 2013, 3: 72-78.

[27]

Kartoolinejad D, Hosseini SM, Mirnia SK, Akbarinia M, Shayanmehr F. The relationship among infection intensity of Viscum album with some ecological parameters of host trees. Int J Environ Res, 2007, 1: 143-149.

[28]

Ketenoglu O, Tug GN, Bingol U, Geven F, Kurt L, Guney K. Synopsis of syntaxonomy of Turkish forests. J Environ Biol, 2010, 31: 71-80.

[29]

Khodaparast SA, Salimi M, Ahmadi SB, Mehri Z. Eight new or less known mitosporic fungi for Iran mycoflora from Guilan Province (N. Iran). Rostaniha, 2008, 9: 89-99.

[30]

Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol, 1980, 16: 111-120.

[31]

King JE, Cook RJ, Melville SC. A review of Septoria diseases of wheat and barley. Ann Appl Biol, 1983, 103: 345-373.

[32]

Kress WJ, Wurdack KJ, Zimmer EA, Weigt LA, Janzen DH. Use of DNA barcodes to identify flowering plants. Proc Natl Acad Sci USA, 2005, 102: 8369-8374.

[33]

Librado P, Rozas J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 2009, 25: 1451-1452.

[34]

Liu J, Provan J, Gao LM, Li DZ. Sampling strategy and potential utility of indels for DNA barcoding of closely related plant species: a case study in Taxus. Int J Mol Sci, 2012, 13: 8740-8751.

[35]

Magnus P. Fungi, Pars II. J. Bornmüller. Iter Persico-turcicum 1892/93. Verh Zool Bot Ges Wien, 1899, 49: 87-103.

[36]

Mattioni C, Martin MA, Pollegioni P, Cherubini M, Villani F. Microsatellite markers reveal a strong geographical structure in European populations of Castanea sativa (Fagaceae): evidence for multiple glacial refugia. Am J Bot, 2013, 100: 951-961.

[37]

McDonald BA, McDermott JM, Goodwin SB, Allard RW. The population biology of host-pathogen interactions. Annu Rev Phytopathol, 1989, 27: 77-94.

[38]

Mojerlou S, Safaie N, Alizadeh A, Khelghatibana F. Measuring and modeling crop loss of wheat caused by Septoria leaf blotch in seven cultivars and lines in Iran. J Plant Prot Res, 2009, 49: 257-262.

[39]

Quaedvlieg W, Verkley GJM, Shin HD, Barreto RW, Alfenas AC, Swart WJ, Groenewald JZ, Crous PW. Sizing up Septoria. Stud Mycol, 2013, 75: 307-390.

[40]

Roane MK, Griffin GJ, Elkins JR. Chestnut blight, other Endothia diseases, and the genus Endothia, 1986, Philadelphia: The American Phytopathological Society.

[41]

Seifbarghi S, Razavi M, Aminian H, Zare R, Etebarian H. Studies on the host range of Septoria species on cereals and some wild grasses in Iran. Phytopathol Mediterr, 2010, 48: 422-429.

[42]

Selçuk F, Erdoğdu M, Akgül H, Hüseyin E. The genus Septoria Sacc. in Turkey. Mycopath, 2009, 7: 21-28.

[43]

Tamura K, Dudley J, Nei M, Kumar S. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol, 2007, 24: 1596-1599.

[44]

Verkley GJM, Starink-Willemse M. A phylogenetic study of some Septoria species pathogenic to Asteraceae based on ITS ribosomal DNA sequences. Mycol Prog, 2004, 3: 315-323.

[45]

Verkley GJM, Starink-Willemse M, van Iperen A, Abeln EC. Phylogenetic analyses of Septoria species based on the ITS and LSU-D2 regions of nuclear ribosomal DNA. Mycologia, 2004, 96: 558-571.

[46]

Verkley GJM, Quaedvlieg W, Shin HD, Crous PW. A new approach to species delimitation in Septoria. Stud Mycol, 2013, 75: 213-305.

[47]

White TJ, Bruns T, Lee SJWT, Taylor JW. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protoc Guide Methods Appl, 1990, 18: 315-322.

[48]

Wolf M, Achtziger M, Schultz J, Dandekar T, Müller T. Homology modeling revealed more than 20,000 rRNA internal transcribed spacer 2 (ITS2) secondary structures. RNA, 2005, 11: 1616-1623.

[49]

Yousefzadeh H, Colagar AH, Tabari M, Sattarian A, Assadi M. Utility of ITS region sequence and structure for molecular identification of Tilia species from Hyrcanian forests. Iran Plant Syst Evol, 2012, 298: 947-961.

[50]

Yousefzadeh H, Colagar AH, Akbarzadeh F, Tippery NP. Taxonomic status and genetic differentiation of Hyrcanian Castanea based on noncoding chloroplast DNA sequences data. Tree Genet Genomes, 2014, 10: 1611-1629.

AI Summary AI Mindmap
PDF

135

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/