The progress of operational forest fire monitoring with infrared remote sensing

Lizhong Hua , Guofan Shao

Journal of Forestry Research ›› 2016, Vol. 28 ›› Issue (2) : 215 -229.

PDF
Journal of Forestry Research ›› 2016, Vol. 28 ›› Issue (2) : 215 -229. DOI: 10.1007/s11676-016-0361-8
Review Article

The progress of operational forest fire monitoring with infrared remote sensing

Author information +
History +
PDF

Abstract

Forest wildfires pose significant and growing threats to human safety, wildlife habitat, regional economies and global climate change. It is crucial that forest fires be subject to timely and accurate monitoring by forest fire managers and other stake-holders. Measurement by spaceborne equipment has become a practical and appealing method to monitor the occurrence and development of forest wildfires. Here we present an overview of the principles and case studies of forest fire monitoring (FFM) with satellite- and drone-mounted infrared remote sensing (IRRS). This review includes four types of FFM-relevant IRRS algorithms: bi-spectral methods, fixed threshold methods, spatial contextual methods, and multi-temporal methods. The spatial contextual methods are presented in detail since they can be applied easily with commonly available satellite IRRS data, including MODIS, VIIRS, and Landsat 8 OLI. This review also evaluates typical cases of FFM using NOAA-AVHRR, EOS-MODIS, S-NPP VIIRS, Landsat 8 OLI, MSG-SEVIRI, and drone infrared data. To better implement IRRS applications in FFM, it is important to develop accurate forest masks, carry out systematic comparative studies of various forest fire detection systems (known as forest fire products), and improve methods for assessing the accuracy of forest fire detection. Medium-resolution IRRS data are effective for landscape-scale FFM, and the VIIRS 375 m contextual algorithm and RST-FIRES algorithm are helpful for closely tracking forest fires (including small and short-lived fires) and forest-fire early warning.

Keywords

Landsat 8 OLI / MODIS / Remote sensing / Review / Thermal infrared / VIIRS / Wildfire

Cite this article

Download citation ▾
Lizhong Hua, Guofan Shao. The progress of operational forest fire monitoring with infrared remote sensing. Journal of Forestry Research, 2016, 28(2): 215-229 DOI:10.1007/s11676-016-0361-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ahmad AAA. A review on forest fire detection techniques. Int J Distrib Sensor Netw, 2014, 10(3): 1-12.

[2]

Ambrosia V, Wegener S, Zajkowski T, Sullivan D, Buechel S, Enomoto F, Lobitz B, Johan S, Brass J, Hinkley E. The Ikhana unmanned airborne system (UAS) western states fire imaging missions: from concept to reality (2006–2010). Geocarto Int, 2011, 26(2): 85-101.

[3]

Andreae MO. Goldammer JG. Magnitude and impacts of vegetation fire emissions on the atmosphere. Vegetation fires and global change: challenges for concerted international action: a white paper directed to the United Nations and International Organizations, 2013, Remagen: Kessel Publishing House 171 180

[4]

Arino O, Melinotte JM. The 1993 Africa fire map. Int J Remote Sens, 1998, 19(11): 2019-2023.

[5]

Arino O, Rosaz JM. Neuenschwander LF, Ryan KC, Golberg GE. 1997 and 1998 World ATSR Fire Atlas using ERS-2 ATSR-2 data. Proceedings of the joint fire science conference, 1999, Boise: University of Idaho and the International Association of Wildland Fire 177 182

[6]

Blackett M. An initial comparison of the thermal anomaly detection products of MODIS and VIIRS in their observation of Indonesian volcanic activity. Remote Sens Environ, 2015, 171: 75-82.

[7]

Boles SH, Verbyla DL. Comparison of three AVHRR-based fire detection algorithms for interior Alaska. Remote Sens Environ, 2000, 72(1): 1-16.

[8]

Calle A, Casanova JL. Coskun HG, Cigizoglu HK, Maktav MD. Forest fires and remote sensing. Integration of information for environmental security, 2008, Berlin: Springer 247 290

[9]

Cao CY, De Luccia FJ, Xiong XX, Wolfe R, Weng FZ. Early on-orbit performance of the visible infrared imaging radiometer suite onboard the suomi national polar-orbiting partnership (S-NPP) satellite. IEEE Trans Geosci Remote, 2014, 52(2): 1142-1156.

[10]

Cheng D, Rogan J, Schneider L, Cochrane M. Evaluating MODIS active fire products in subtropical Yucatán forest. Remote Sens Lett, 2013, 4(10): 455-464.

[11]

Chuvieco E, Martin MP. A simple method for fire growth mapping using AVHRR channel 3 data. Int J Remote Sens, 1994, 15(16): 3141-3146.

[12]

Csiszar I, Schroeder W, Giglio L, Ellicott E, Vadrevu KP, Justice CO, Wind B. Active fires from the Suomi NPP visible infrared imaging radiometer suite: product status and first evaluation results. J Geophys Res, 2014, 119(2): 803-816.

[13]

Cuomo V, Lasaponara R, Tramutoli V. Evaluation of a new satellite-based method for forest fire detection. Int J Remote Sens, 2001, 22(9): 1799-1826.

[14]

Dennison PE, Brewer SC, Arnold JD, Moritz MA. Large wildfire trends in the western United States, 1984–2011. Geophy Res Lett, 2014, 41(8): 2928-2933.

[15]

Dozier J. A method for satellite identification of surface temperature fields of subpixel resolution. Remote Sens Environ, 1981, 11: 221-229.

[16]

Eckmann TC, Roberts DA, Still CJ. Using multiple endmember spectral mixture analysis to retrieve subpixel fire properties from MODIS. Remote Sens Environ, 2008, 112: 3773-3783.

[17]

Elvidge CD, Zhizhin M, Hsu FC, Baugh KE. VIIRS nightfire: satellite pyrometry at night. Remote Sens, 2013, 5(9): 4423-4449.

[18]

Filizzola C, Corrado R, Marchese F, Mazzeo G, Paciello R, Pergola N, Tramutoli V. RST-FIRES, an exportable algorithm for early-fire detection and monitoring: description, implementation, and field validation in the case of the MSG-SEVIRI sensor. Remote Sens Environ, 2016, 186: 196-216.

[19]

Flannigan MD, Haar THV. Forest fire monitoring using NOAA satellite AVHRR. Canadian J Forest Res, 1986, 16(5): 975-982.

[20]

Giglio L, Kendall JD. Application of the Dozier retrieval to wildfire characterization: a sensitivity analysis. Remote Sens Environ, 2001, 77(1): 34-49.

[21]

Giglio L, Schroeder W. A global feasibility assessment of the bi-spectral fire temperature and area retrieval using MODIS data. Remote Sens Environ, 2014, 152: 166-173.

[22]

Giglio L, Kendall JD, Justice CO. Evaluation of global fire detection algorithms using simulated AVHRR infrared data. Int J Remote Sens, 1999, 20(10): 1947-1985.

[23]

Giglio L, Descloitres J, Justice CO, Kaufman YJ. An enhanced contextual fire detection algorithm for MODIS. Remote Sens Environ, 2003, 87(2): 273-282.

[24]

Giglio L, Csiszar I, Justice CO. Global distribution and seasonality of active fires as observed with the Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) sensors. J Geophys Res, 2006, 111(G2): 1-12.

[25]

Giglio L, Csiszar I, Restás Á, Morisette JT, Schroeder W, Morton D, Justice CO. Active fire detection and characterization with the advanced spaceborne thermal emission and reflection radiometer (ASTER). Remote Sens Environ, 2008, 112(6): 3055-3063.

[26]

Giglio L, Schroeder W, Justice CO. The collection 6 MODIS active fire detection algorithm and fire products. Remote Sens Environ, 2016, 178: 31-41.

[27]

Gong P, Pu R, Li Z, Scarborough J, Clinton N, Levien LM. An integrated approach to wildland fire mapping of California, USA using NOAA/AVHRR data. Photogramm Eng Remote Sens, 2006, 72(2): 139-150.

[28]

Kaufman YJ, Tucker CJ, Fung I. Remote sensing of biomass burning in the tropics. J Geophys Res, 1990, 95(D7): 9927-9939.

[29]

Kaufman YJ, Justice C, Flynn L. Monitoring global fires from EOS-MODIS. J Geophys Res, 1998, 102(29): 611-624.

[30]

Kennedy PJ, Belward AS, Gregoire JM. An improved approach to fire monitoring in West Africa using AVHRR data. Int J Remote Sens, 1994, 15(11): 2235-2255.

[31]

Koeppen W, Pilger E, Wright R. Time series analysis of low resolution thermal infrared satellite data for detecting thermal anomalies: a hybrid approach. Bull Volcanol, 2011, 73(5): 577-593.

[32]

Koltunov A, Ustin SL. Early fire detection using non-linear multitemporal prediction of thermal imagery. Remote Sens Environ, 2007, 110(1): 18-28.

[33]

Langaas S. Temporal and spatial distribution of Savannah fires in Senegal and the Gambia, West Africa, 1989–1990, derived from multi-temporal AVHRR night images. Int J Wildland Fire, 1992, 2(1): 21-36.

[34]

Lavrov A, Utkin AB, Vilar R, Fernandes A. Evaluation of smoke dispersion from forest fire plumes using lidar experiments and modeling. Int J Therm Sci, 2006, 45(9): 848-859.

[35]

Li Z, Nadon S, Cihlar J. Satellite-based detection of Canadian boreal forest fires: development and application of the algorithm. Int J Remote Sens, 2000, 21(16): 3057-3069.

[36]

Li X, Kaufman YJ, Ichoku C, Fraser R, Trishcenko A, Giglio L, Kin J, Yu X. Ahern FJ, Goldammer JG, Justice CO. A review of AVHRR-based active fire detection algorithms: principles, limitations, and recommendations. Global and regional vegetation fire monitoring from space: planning and coordinated international effort, 2001, Hague: SPB Academic 199 225

[37]

Li ZQ, Fraser R, Jin J, Abuelgasim AA, Csiszar I, Gong P, Pu R, Hao W. Evaluation of algorithms for fire detection and mapping across North America from satellite. J Geophys Res, 2003, 108(D2): 171-181.

[38]

Li XL, Song WG, Lian LP, Wei XG. Forest fire smoke detection using back-propagation neural network based on MODIS data. Remote Sens, 2015, 7(4): 4473-4498.

[39]

Lin L, Meng Y, Yue AZ, Yuan Y, Liu XY, Chen JB, Zhang MM, Chen JS. A spatio-temporal model for forest fire detection using HJ-IRS satellite data. Remote Sens, 2016 8 5 403

[40]

Loveland TR, Irons JR. Landsat 8: the plans, the reality, and the legacy. Remote Sens Environ, 2016, 185: 1-6.

[41]

Martell DL. A review of recent forest and wildland fire management decision support systems research. Curr For Rep, 2015, 1(2): 128-137.

[42]

Matson M, Dozier J. Identification of subresolution high temperature sources using a thermal IR sensor. Photogramm Eng Remote Sens, 1981, 47(9): 1311-1318.

[43]

Mazzeo G, Marchese F, Filizzola C, Pergola N, Tramutoli V (2007) A multi-temporal robust satellite technique (RST) for forest fire detection. In: Proceedings of the international workshop on the analysis of multi-temporal remote sensing images. IEEE, Piscataway. Doi: 10.1109/MULTITEMP.2007.4293060

[44]

Meng Y, Deng Y, Shi P. Shi PJ, Kasperson R. Mapping forest wildfire risk of the world. World atlas of natural disaster risk, 2015, Berlin: Springer 261 275

[45]

Merino L, Caballero F, Martrial de Dios R, Maza I, Ollero A. An unmanned aircraft system for automatic forest fire monitoring and measurement. J Intell Robot Syst, 2012, 65(1): 533-548.

[46]

Oliva P, Schroeder W. Assessment of VIIRS 375 m active fire detection product for direct burned area mapping. Remote Sens Environ, 2015, 160: 144-155.

[47]

Ollero A, Merino L. Unmanned aerial vehicles as tools for forest-fire fighting. For Ecol Manag, 2006 234 1 S263

[48]

Peterson D, Wang J, Ichoku C, Hyer E, Ambrosia V. A sub-pixel-based calculation of fire radiative power from MODIS observations: 1: algorithm development and initial assessment. Remote Sens Environ, 2013, 129: 262-279.

[49]

Pozo D, Olrno FJ, Alados-Arboledas L. Fire detection and growth monitoring using a multitemporal technique on AVHRR mid-infrared and thermal channels. Remote Sens Environ, 1997, 60(2): 111-120.

[50]

Pu RL, Gong P, Li ZS, Scarborough J. A dynamic algorithm for wildfire mapping with NOAA/AVHRR data. Int J Wildland Fire, 2004, 13(3): 275-285.

[51]

Qu JJ, Wang W, Dasgupta S, Hao X. Active fire monitoring and fire danger potential detection from space: a review. Front Earth Sci in Chin, 2008, 2(4): 479-486.

[52]

Roberts GJ, Wooster MJ. Fire detection and fire characterization over Africa using Meteosat SEVIRI. IEEE Trans Geosci Remote, 2008, 46(4): 1200-1218.

[53]

Roberts G, Wooster MJ. Development of a multi-temporal Kalman filter approach to geostationary active fire detection & fire radiative power (FRP) estimation. Remote Sens Environ, 2014, 152: 392-412.

[54]

Roy DP, Boschetti L, Justice CO, Ju J. The collection 5 MODIS burned area product—global evaluation by comparison with the MODIS active fire product. Remote Sens Environ, 2008, 112: 3690-3707.

[55]

Sahin YG, Ince T. Early forest fire detection using radio-acoustic sounding system. Sensors, 2009, 9(3): 1485-1498.

[56]

San-Miguel-Ayanz J, Ravail N. Active fire detection for fire emergency management: potential and limitations for the operational use of remote sensing. Nat Hazards, 2005, 35(3): 361-376.

[57]

Schroeder W, Prins E, Giglio L, Csiszar I, Schmidt C, Morisette JT, Morton D. Validation of GOES and MODIS active fire detection products using ASTER and ETM+ data. Remote Sens Environ, 2008, 112: 2711-2726.

[58]

Schroeder W, Oliva P, Giglio L, Csiszar IA. The New VIIRS 375 m active fire detection data product: algorithm description and initial assessment. Remote Sens Environ, 2014, 143: 85-96.

[59]

Schroeder W, Oliva P, Giglio L, Quayle B, Lorenz E, Morelli F. Active fire detection using Landsat-8/OLI data. Remote Sens Environ, 2016, 185: 210-220.

[60]

Setzer AW, Pereira MC. Amazonian biomass burnings in 1987 and an estimate of their tropospheric emission. Ambio, 1991, 20(1): 19-22.

[61]

Shao GF. Richardson D. Optical remote sensing. The international encyclopedia of geography: people, the earth, environment, and technology, 2015 2 Chichester: Wiley 2390 2395

[62]

Tang LN, Shao GF. Drone remote sensing for forestry research and practices. J For Res, 2015, 26(4): 791-797.

[63]

Urbanski SP, Salmon JM, Nordgren BL, Hao WM. A MODIS direct broadcast algorithm for mapping wildfire burned area in the western United States. Remote Sens Environ, 2009, 113(11): 2511-2526.

[64]

Vadrevu KP, Lasko K, Giglio L, Justice C. Vegetation fires, absorbing aerosols and smoke plume characteristics in diverse biomass burning regions of Asia. Environ Res Lett, 2015, 10: 105003.

[65]

Wang W, Qu JJ, Hao X, Liu Y, Sommers WT. An improved algorithm for small and cool fire detection using MODIS data: a preliminary study in the southeastern United States. Remote Sens Environ, 2007, 108(2): 163-170.

[66]

Wang W, Qu JJ, Hao X, Liu Y. Analysis of the moderate resolution imaging spectroradiometer contextual algorithm for small fire detection. J Appl Remote Sens, 2009, 3(1): 117-124.

[67]

Weaver JF, Purdom JFW, Schneider TL. Observing forest fires with the GOES-8, 3.9-μm imaging channel. Weather Forecast, 1995, 10(4): 803-808.

[68]

Yuan C, Zhang YM, Liu ZX. A survey on technologies for automatic forest fire monitoring, detection, and fighting using unmanned aerial vehicles and remote sensing techniques. Can J For Res, 2015, 45(7): 783-792.

[69]

Zhou XC, Wang XQ, Xiang TL, Jiang H. Validation analysis of the algorithm for identifying forest fire based on MODIS data. Fire Saf Sci, 2006, 15(1): 31-37. (In Chinese)

[70]

Zhukov B, Lorenz E, Oertel D, Wooster M, Roberts G. Spaceborne detection and characterization of fires during the bi-spectral infrared detection (BIRD) experimental small satellite mission (2001–2004). Remote Sens Environ, 2006, 100(1): 29-51.

AI Summary AI Mindmap
PDF

351

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/