Deep sequencing of Magnoliae officinalis reveals upstream genes related to the lignan biosynthetic pathway

Xiaodong Shi , Langsheng Yang , Jihai Gao , Yuzhen Sheng , Xiaoqing Li , Yunjie Gu , Guoqing Zhuang , Fang Chen

Journal of Forestry Research ›› 2016, Vol. 28 ›› Issue (4) : 671 -681.

PDF
Journal of Forestry Research ›› 2016, Vol. 28 ›› Issue (4) : 671 -681. DOI: 10.1007/s11676-016-0356-5
Original Paper

Deep sequencing of Magnoliae officinalis reveals upstream genes related to the lignan biosynthetic pathway

Author information +
History +
PDF

Abstract

Magnoliae officinalis is the plant source of houpo, a widely used traditional Chinese medicine to treat symptoms of gastrointestinal diseases. Its main active components, magnolol (MG) and honokiol (HK), have excellent pharmacological actions, but little research has focused on the functional genes involved in the MG and HK metabolic pathways. In this study, using RNA-seq and gene expression profile, we present the first transcriptome characterization of M. officinalis leaves, twigs and stems. Based on similarity search against nonredundant protein databases, 30,660 contigs had at least a significant alignment to existing public database. Pathway analysis showed that 8707 contigs were assigned to 317 KEGG pathways. A second skeleton pathway with 14 putative homologous genes was also identified as involved in lignan biosynthesis. Expression profiles of these 14 genes showed that leaves and twigs seem to have higher transcript levels for lignan components than in stem tissue; this result was then verified by qRT-PCR. Our work will immensely facilitate metabolic research on lignan biosynthesis in M. officinalis.

Keywords

Honokiol / Lignan pathway / Magnoliae officinalis / Magnolol / Transcriptome

Cite this article

Download citation ▾
Xiaodong Shi, Langsheng Yang, Jihai Gao, Yuzhen Sheng, Xiaoqing Li, Yunjie Gu, Guoqing Zhuang, Fang Chen. Deep sequencing of Magnoliae officinalis reveals upstream genes related to the lignan biosynthetic pathway. Journal of Forestry Research, 2016, 28(4): 671-681 DOI:10.1007/s11676-016-0356-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ahmed S, Zhan C, Yang Y, Wang X, Yang T, Zhao Z, Zhang Q, Li X, Hu X. The transcript profile of a traditional chinese medicine, Atractylodes lancea, revealing its sesquiterpenoid biosynthesis of the major active components. PLoS ONE, 2016 11 3 e0151975

[2]

Amblard F, Baskaran G, Benjamin L, Kimberly LR, Mervi D, Jack LA, Raymond FS. Synthesis, cytotoxicity, and antiviral activities of new neolignans related to honokiol and magnolol. Bioorg Med Chem Lett, 2007, 17(16): 4428-4431.

[3]

Andrews S (2010) FastQC: a quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/. Accessed 06 October, 2011

[4]

Anterola AM, Norman GL. Trends in lignin modification: a comprehensive analysis of the effects of genetic manipulations/mutations on lignification and vascular integrity. Phytochemistry, 2002, 61(3): 221-294.

[5]

Chang B, Lee Y, Ku Y, Bae K, Chung C. Antimicrobial activity of magnolol and honokiol against periodontopathic microorganisms. Planta Med, 1998, 64(4): 367-369.

[6]

Chen F, Wang T, Wu YF, Gu Y, Xu XL, Zheng S, Hu X. Honokiol: a potent chemotherapy candidate for human colorectal carcinoma. World J Gastroenterol, 2004, 10(23): 3459-3463.

[7]

Ehlting J, Büttner D, Wang Q, Douglas CJ, Somssich IE, Kombrink E. Three 4-coumarate: coenzyme A ligases in Arabidopsis thaliana represent two evolutionarily divergent classes in angiosperms. Plant J, 1999, 19(1): 9-20.

[8]

Eklund P, Lindholm A, Mikkola JP, Smeds A, Lehtila R, Sjoholm R. Synthesis of (−)-matairesinol, (−)-enterolactone, and (−)-enterodiol from the natural lignan hydroxymatairesinol. Org Lett, 2003, 5(4): 491-493.

[9]

Ghobrial IM, Witzig TE, Adjei AA. Targeting apoptosis pathways in cancer therapy. CA Cancer J Clin, 2005, 55(3): 178-194.

[10]

Goodger JQ, Heskes AM, Woodrow IE. Contrasting ontogenetic trajectories for phenolic and terpenoid defences in Eucalyptus froggattii. Ann Bot, 2013, 112(4): 651-659.

[11]

Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol, 2011, 29(7): 644-652.

[12]

Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Couger MB, Eccles D, Li B, Lieber M, MacManes MD, Ott M, Orvis J, Pochet N, Strozzi P, Weeks N, Westerman R, William T, Dewey CN, Henschel R, Duc RDL, Friedman R, Regev A. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc, 2013, 8(8): 1494-1512.

[13]

Ho KY, Tsai CC, Chen CP, Huang JS, Lin CC. Antimicrobial activity of honokiol and magnolol isolated from Magnolia officinalis. Phytother Res, 2001, 15(2): 139-141.

[14]

Hsiao WL, Liang L. The role of traditional Chinese herbal medicines in cancer therapy–from TCM theory to mechanistic insights. Planta Med, 2010, 76(11): 1118-1131.

[15]

Jiang Y, Vaysse J, Gilard V, Balayssac S, Dejean S, Malet-Martino M, David B, Fiorini C, Barbin Y. Quality assessment of commercial Magnoliae officinalis cortex by (1)H-NMR-based metabolomics and HPLC methods. Phytochem Anal, 2012, 23(4): 387-395.

[16]

John MH, Clint C. Rewriting the lignin roadmap. Curr Opin Plant Biol, 2002, 5(3): 224-229.

[17]

Jones L, Ennos AR, Turner SR. Cloning and characterization of irregular xylem4 (irx4): a severely lignin-deficient mutant of Arabidopsis. Plant J, 2001, 26(2): 205-216.

[18]

Kim BH, Cho JY. Anti-inflammatory effect of honokiol is mediated by PI3 K/Akt pathway suppression1. Acta Pharmacol Sin, 2008, 29(1): 113-122.

[19]

Kim HJ, Ono E, Morimoto K, Yamagaki T, Okazawa A, Kobayashi A, Satake H. Metabolic engineering of lignan biosynthesis in Forsythia cell culture. Plant Cell Physiol, 2009, 50(12): 2200-2209.

[20]

Kuribara H, Eiko K, Naoko H, Mitsutoshi Y, Yuji M. Application of the elevated plus-maze test in mice for evaluation of the content of Honokiol in water extracts of magnolia. Phytother Res, 1999, 13(7): 593-596.

[21]

Lauvergeat V, Christophe L, Eric L, Eric L, Dominique R, Jacqueline GP. Two cinnamoyl-CoA reductase (CCR) genes from Arabidopsis thaliana are differentially expressed during development and in response to infection with pathogenic bacteria. Phytochemistry, 2001, 57(7): 1187-1195.

[22]

Lee D, Ellard M, Wanner LA, Davis KR, Douglas CJ. The Arabidopsis thaliana 4-coumarate: coA ligase (4CL) gene: stress and developmentally regulated expression and nucleotide sequence of its cDNA. Plant Mol Biol, 1995, 28(5): 871-884.

[23]

Li L, Cheng XF, Leshkevich J, Umezawa T, Harding SA, Chiang VL. The last step of syringyl monolignol biosynthesis in angiosperms is regulated by a novel gene encoding sinapyl alcohol dehydrogenase. Plant Cell, 2001, 13(7): 1567-1586.

[24]

Li HY, Yang Y, Wang ZJ, Guo XH, Liu FF, Jiang J, Liu GF. BpMADS12, gene role in lignin biosynthesis of betula platyphylla, suk by transcriptome analysis. J For Res, 2016, 27(5): 1111-1120.

[25]

Lin YR, Chen HH, Ko CH, Chan MH. Neuroprotective activity of honokiol and magnolol in cerebellar granule cell damage. Eur J Pharmacol, 2006, 537(1): 64-69.

[26]

Liou KT, Lin SM, Huang SS, Chih CL, Tsai SK. Honokiol ameliorates cerebral infarction from ischemia-reperfusion injury in rats. Planta Med, 2003, 69(02): 130-134.

[27]

Maruyama Y, Kuribara H, Morita M, Yuzurihara M, Weintraub ST. Identification of magnolol and honokiol as anxiolytic agents in extracts of saiboku-to, an oriental herbal medicine. J Nat Prod, 1998, 61(1): 135-138.

[28]

Matsui N, Takahashi K, Takeichi M, Kuroshita T, Noguchi K, Yamazaki K, Tagashira H, Tsutsui K, Okada H, Kido Y. Magnolol and honokiol prevent learning and memory impairment and cholinergic deficit in SAMP8 mice. Brain Res, 2009, 1305: 108-117.

[29]

National Pharmacopoeia Committee. Pharmacopoeia of People s Republic of China, 2000, Beijing: Chemical Industry Press 204

[30]

Pop M, Salzberg SL. Bioinformatics challenges of new sequencing technology. Trends Genet, 2008, 24(3): 142-149.

[31]

Raes J, Rohde A, Christensen JH, Van PY, Boerjan W. Genome-wide characterization of the lignification toolbox in arabidopsis. Plant Physiol, 2003, 133(3): 1051-1071.

[32]

Rice P, Longden I, Bleasby A. Emboss: the European molecular biology open software suite. Trends Genet Tig, 2000, 16(6): 276-277.

[33]

Sakakibara N, Suzuki S, Umezawa T, Shimada M. Biosynthesis of yatein in Anthriscus sylvestris. Org Biomol Chem, 2003, 1(14): 2474-2485.

[34]

Shen CC, Ni CL, Shen YC, Huang YL, Kuo CH, Wu TS, Chen CC. Phenolic constituents from the stem bark of Magnolia officinalis. J Nat Prod, 2008, 72(1): 168-171.

[35]

Shitan N, Dalmas F, Dan K, Kato N, Ueda K, Sato F, Forestier C, Yazaki K. Characterization of Coptis japonica CjABCB2, an ATP-binding cassette protein involved in alkaloid transport. Phytochemistry, 2013, 91(4): 109-116.

[36]

Shoji T, Yamada Y, Hashimoto T. Jasmonate induction of putrescine N-methyltransferase genes in the root of Nicotiana sylvestris. Plant Cell Physiol, 2000, 41(7): 831-839.

[37]

Sloan DB, Keller SR, Berardi AE, Sanderson BJ, Karpovich JF, Taylor DR. De novo transcriptome assembly and polymorphism detection in the flowering plant Silene vulgaris (Caryophyllaceae). Mol Ecol Resour, 2012, 12(2): 333-343.

[38]

Terasaka K, Sakai K, Sato F, Yamamoto H, Yazaki K. Thalictrum minus cell cultures and ABC-like transporter. Phytochemistry, 2003, 62(3): 483-489.

[39]

Torre JC, Schmidt GW, Paetz C, Reichelt M, Schneider B, Gershenzon J, DAuria JC. The biosynthesis of hydroxycinnamoyl quinate esters and their role in the storage of cocaine in Erythroxylum coca. Phytochemistry, 2013, 91(4): 177-186.

[40]

Trapnell C, Pachter L, Salzberg SL. Tophat: discovering splice junctions with RNA-seq. Bioinformatics, 2009, 25(9): 1105-1111.

[41]

Van U, Aart SB, Jan F, Oskar M, Harry JW, Pieter DW, Herman JW, Richard MK, Niesko P. The production of podophyllotoxin and its 5-methoxy derivative through bioconversion of cyclodextrin-complexed desoxypodophyllotoxin by plant cell cultures. Plant Cell Tissue Organ Cult, 1995, 42(1): 73-79.

[42]

Yang C, Zhi XY, Xu H. Advances on semisynthesis, total synthesis, and structure-activity relationships of Honokiol and Magnolol derivatives. Mini-Rev Med Chem, 2016, 16(5): 404-426.

[43]

Yazaki K. ABC transporters involved in the transport of plant secondary metabolites. FEBS Lett, 2006, 580(4): 1183-1191.

AI Summary AI Mindmap
PDF

157

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/