Comparison of satellite images with different spatial resolutions to estimate stand structural diversity in urban forests

Ulas Yunus Ozkan , Ibrahim Ozdemir , Tufan Demirel , Serhun Saglam , Ahmet Yesil

Journal of Forestry Research ›› 2016, Vol. 28 ›› Issue (4) : 805 -814.

PDF
Journal of Forestry Research ›› 2016, Vol. 28 ›› Issue (4) : 805 -814. DOI: 10.1007/s11676-016-0353-8
Original Paper

Comparison of satellite images with different spatial resolutions to estimate stand structural diversity in urban forests

Author information +
History +
PDF

Abstract

The structural diversity in urban forests is highly important to protect biodiversity. In particular, fruit trees and bush species, cavity-bearing trees and coarse, woody debris provide habitats for animals to feed, nest and hide. Improper silvicultural practices, intensive recreational use and illegal harvesting lead to a decline in the structural diversity in forests within larger metropolitan cities. It is important to monitor the structural diversity at definite time intervals using effective technologies with a view to instituting the necessary conservation measures. The use of satellite images seems to be appropriate to this end. Here we aimed to identify the associations between the textural features derived from the satellite images with different spatial resolutions and the structural diversity indices in urban forest stands (Shannon–Wiener index, complexity index, dominance index and density of wildlife trees). RapidEye images with a spatial resolution of 5 m × 5 m, ASTER images with a spatial resolution of 15 m × 15 m and Landsat-8 ETM satellite images with a spatial resolution of 30 m × 30 m were used in this study. The first-order (standard deviation of gray levels) and second order (GLCM entropy, GLCM contrast and GLCM correlation) textural features were calculated from the satellite images. When associations between textural features in the images and the structural diversity indices were assessed using the Pearson correlation coefficient, very high associations were found between the image textural features and the diversity indices. The highest association was found between the standard deviation of gray levels (SDGLRAP) derived from RVIRAP of RapidEye image and the Shannon–Wiener index (H h) calculated on the basis of tree height (R 2 = 0.64). The findings revealed that RapidEye satellite images with a spatial resolution of 5 m × 5 m are most suitable for estimating the structural diversity in urban forests.

Keywords

Biodiversity / Satellite image / Structural diversity / Texture measures / Urban forests

Cite this article

Download citation ▾
Ulas Yunus Ozkan, Ibrahim Ozdemir, Tufan Demirel, Serhun Saglam, Ahmet Yesil. Comparison of satellite images with different spatial resolutions to estimate stand structural diversity in urban forests. Journal of Forestry Research, 2016, 28(4): 805-814 DOI:10.1007/s11676-016-0353-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alvey AA. Promoting and preserving biodiversity in the urban forest. Urban For Urban Green, 2006, 1(2): 195-201.

[2]

Asan U, Özkan UY, Zengin H, Sağlam S (2007) Principals of application of ecosystem based functional planning approach in city Groves. Bottlenecks, solutions, and priorities in the context of functions of forest resources International Symposium, İstanbul, 227–242

[3]

Baskent EZ, Jordan GA. Characterizing Spatial Structure of Forest Landscapes. Can J For Res-Rev Comedienne De Recherche Forestiere, 1995, 25(11): 1830-1849.

[4]

Birth GS, McVey GR. Measuring color of growing turf with a reflectance spectrophotometer. Agron J, 1968, 60: 640-649.

[5]

Castillo-Santiago MA, Ricker M, de Jong BH. Estimation of tropical forest structure from SPOT-5 satellite images. Int J Remote Sens, 2010, 31(10): 2767-2782.

[6]

Chen WB, Zhao XF. Estimation of forest parameters based on TM imagery and statistical analysis. J For Res, 2007, 18(3): 241-244.

[7]

Cho MA, Skidmore AK, Sobhan I. Mapping beech (Fagus sylvatica L.) forest structure with airborne hyperspectral imagery. Int J Appl Earth Obs Geoinf, 2009, 11(3): 201-211.

[8]

Clark DB, Clark DA. Landscape-scale variation in forest structure and biomass in a tropical rain forest. For Ecol Manag, 2000, 137: 185-198.

[9]

Crippen RE. Calculating the vegetation index faster. Remote Sens Environ, 1990, 34(1): 71-73.

[10]

Definiens AG. 2006. Definiens Professional 5 Reference Book. Definiens AG, 122 pp

[11]

Gillespie TW, Foody GM, Rocchini D, Giorgi AP, Saatchi S. Measuring and modelling biodiversity from space. Prog Phys Geogr, 2008, 32(2): 203-221.

[12]

Günlü A, Ercanlı İ, Sönmez T, Başkent EZ. Prediction of some stand parameters using pan-sharpened IKONOS satellite image. Eur J Remote Sens, 2014, 47: 329-342.

[13]

Harralick RM, Shanmugam K, Dinstein I. Textural features for images classification. IEEE Trans Syst, Man and Cybern, SMC, 1973, 6: 610-621.

[14]

Holdridge LR. 1967. Life zone ecology. Tropical Science Center,  pp 206

[15]

Hui GY, Albert M, Gadow KV. Das Umgebungsmaß als Parameter zur Nachbildung von Bestandesstrukturen. Forstwissenschaftliches Centralblatt, 1998, 117(1): 258-266.

[16]

Hui GY, Li L, Zhao ZH, Dang PX. Comparison of methods in analysis of the tree spatial distribution pattern. Acta Ecol Sin, 2007, 27(11): 4717-4728.

[17]

Hung MC (2002) Urban land cover analysis from satellite images. Pecora 15/Land Satellite Information IV/ISPRS Comission I/FIEOS 2002 Conference Proceesings. Available at: http://www.isprs.org/proceedings/XXXIV/part1/paper/00099.pdf. Accessed 20 Feb 2015

[18]

Hurd JD, Civco DL. 2008. Assessing the impact of land cover spatial resolution on forest fragmentation modelling. ASPRS 2008 Annual Conference, Oregon. Available at: http://clear.uconn.edu/publications/research/tech_papers/Hurd_Civco_ASPRS2008.pdf. Accessed 15 June 2015

[19]

Jensen RJ. Introductory digital image processing, a remote sensing perspective, 1996, Upper Saddle River: Prentice Hall 318

[20]

Kalayci, S. 2006. SPSS Uygulamalı Çok Değişkenli İstatistik Teknikler. Asil Publising

[21]

Kark S, Dearborn DC. Motivations for conserving urban biodiversity. Conserv Biol, 2009, 24(2): 432-440.

[22]

Kayitakire F, Hamel C, Defourny P. Retrieving forest structure variables based on image texture analysis and IKONOS-2 imagery. Remote Sens Environ, 2006, 102(3): 390-401.

[23]

Lexerød NL, Eid T. An evaluation of different diameter diversity indices based on criteria related to forest management planning. For Ecol Manage, 2006, 222(1): 17-28.

[24]

Maco SE, McPherson EG. A practical approach to assessing structure, function, and value of street tree populations in small communities. J Arboric, 2003, 29(2): 84-97.

[25]

Mansfield C, Pattanayak SK, McDow W, McDonald R, Halpin P. Shades of Green: measuring the value of urban forests in the housing market. J For Econ, 2005, 11(3): 177-199.

[26]

McKinney ML. Urbanization, biodiversity, and conservation. Bioscience, 2002, 52(10): 883-890.

[27]

Mohanaiah P, Sathyanarayana P, GuruKumar L. Image texture feature extraction using glcm approach. Int J Sci Res Publ, 2013, 3(5): 1-5.

[28]

Neumann M, Starlinger F. The significance of different indices for stand structure and diversity in forests. For Ecol Manag, 2001, 145(1): 91-106.

[29]

Ozdemir İ, Donoghue DNM. Modelling tree size diversity from airborne laser scanning using canopy height models with image texture measures. For Ecol Manag, 2013, 295: 28-37.

[30]

Ozdemir I, Karnieli A. Predicting forest structural parameters using the image texture derived from WorldView-2 multispectral imagery in a dryland forest, Israel. Int J Appl Earth Obs Geoinf, 2011, 13(5): 701-710.

[31]

Ozdemir I, Norton DA, Ozkan UY, Mert A, Senturk O. Estimation of tree size diversity using object oriented texture analysis and aster imagery. Sensors, 2008, 8(8): 4709-4724.

[32]

Ozdemir I, Mert A, Senturk O. Predicting landscape structural metrics using aster satellite data. J Environmental Eng Landsc Manag, 2012, 20(2): 168-176.

[33]

Ozkan UY (2006) Uydu Görüntüleri Yardımıyla Meşcere Parametrelerinin Kestirilmesi ve Orman Amenajmanında Kullanılması Olanakları. İ.Ü. Orman Fakültesi Dergisi, Seri:A 56(2): 191–218

[34]

Ozkan UY. Assessment of visual landscape quality using IKONOS imagery. Environ Monit Assess, 2014, 186(7): 4067-4080.

[35]

Pasher J, King DJ. Multivariate forest structure modelling and mapping using high resolution airborne imagery and topographic information. Remote Sens Environ, 2010, 114(8): 1718-1732.

[36]

Petr P, Zdena C, Antonin P, Vojtech J, Milan C, Lubomir T. Trends in species diversity and composition of urban vegetation over three decades. J Veg Sci, 2004, 15(6): 781-788.

[37]

Pommerening A. Approaches to quantifying forest structures. Forestry, 2002, 75(3): 305-324.

[38]

Rocchini D, McGlinn D, Ricotta C, Neteler M, Wohlgemuth T. Landscape complexity and spatial scale influence the relationship between remotely sensed spectral diversity and survey-based plant species richness. J Veg Sci, 2011, 22(4): 688-698.

[39]

Rouse JW, Haas RH, Schell JA, Deering DW (1974) Monitoring vegetation systems in the Great Plains with ERTS. In: Proceeding of Third ERTS-1 Symposium. Washington, pp 309–317

[40]

Shannon CE, Weaver W (1949) The mathematical theory of communication. University of Illinois Press, Illinois

[41]

St-Louis V, Pidgeon AM, Clayton MK, Locke BA, Bash D, Radeloff VC. Satellite image texture and a vegetation index predict avian biodiversity in the Chihuahuan Desert of New Mexico. Ecography, 2009, 32(3): 468-480.

[42]

Thakur T, Swamy SL, Nain AS. C. J For Res, 2014, 25(4): 819-825.

[43]

Tucker CJ. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens Environ, 1979, 8: 127-150.

[44]

Tyrväinen L, Pauleit S, Seeland K, Vries D. 2005 Benefits and uses of urban forests and trees. In: E.S. Konijnendijk C, Nilsson K, Randrup T, Schipperjin J (eds) Urban forest and trees. Springer, Berlin, pp 81–114

[45]

Varga P, Chen HY, Klinka K. Tree-size diversity between single-and mixed-species stands in three forest types in western Canada. Can J For Res, 2005, 35(3): 593-601.

[46]

Wolter PT, Townsend PA, Sturtevant BR. Estimation of forest structural parameters using 5 and 10 meter SPOT-5 satellite data. Remote Sens Environ, 2009, 113(9): 2019-2036.

[47]

Wunderle AL, Franklin SE, Guo XG. Regenerating boreal forest structure estimation using SPOT-5 pan-sharpened imagery. Int J Remote Sens, 2007, 28(19): 4351-4364.

AI Summary AI Mindmap
PDF

128

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/