Genetic relationships among sympatric varieties of Acer mono in the Chichibu Mountains and Central Hokkaido, Japan

Chunping Liu , Jian Cong , Hailong Shen , Cunxue Lin , Yoko Saito , Yuji Ide

Journal of Forestry Research ›› 2016, Vol. 28 ›› Issue (4) : 699 -704.

PDF
Journal of Forestry Research ›› 2016, Vol. 28 ›› Issue (4) : 699 -704. DOI: 10.1007/s11676-016-0352-9
Original Paper

Genetic relationships among sympatric varieties of Acer mono in the Chichibu Mountains and Central Hokkaido, Japan

Author information +
History +
PDF

Abstract

Acer mono Maxim. is one of the major components of cool temperate forests in Japan. Some of its many varieties are distributed sympatrically. Because of its great variability, the intraspecific taxonomy and nomenclature of the species are controversial. To understand the genetic relationships among these varieties and whether hybridization or introgression occurred among the sympatric varieties, we studied the genetic relationships among sympatric varieties of A. mono in the Chichibu Mountains (A. mono var. ambiguum, A. mono var. connivens, A. mono var. marmoratum) and Central Hokkaido (A. mono var. mayrii and A. mono var. glabrum) in Japan. Our results showed that varieties in Chichibu are genetically close, suggesting that hybridization or introgression might occur between these varieties, which could explain the higher genetic diversity of varieties in Chichibu than in Hokkaido. In contrast to the close relationships between the varieties in Chichibu, varieties in Hokkaido seemed relatively separated from each other; indeed, there may be reproductive isolation between the two varieties. The results provide new insight for the taxonomy of the varieties of A. mono, especially the sympatric varieties, in Japan.

Keywords

Genetic differentiation / Hybridization / Introgression / Maple / nSSR

Cite this article

Download citation ▾
Chunping Liu, Jian Cong, Hailong Shen, Cunxue Lin, Yoko Saito, Yuji Ide. Genetic relationships among sympatric varieties of Acer mono in the Chichibu Mountains and Central Hokkaido, Japan. Journal of Forestry Research, 2016, 28(4): 699-704 DOI:10.1007/s11676-016-0352-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bacck EJ, Rieseberg LH. A genomic view of introgression and hybrid speciation. Curr Opin Genet Dev, 2007, 17: 513-518.

[2]

Barluenga M, Stolting KN, Salzburger W, Muschick M, Meyer A. Sympatric speciation in Nicaraguan crater lake cichlid fish. Nature, 2006, 439: 719-723.

[3]

Cheng K, Sun K, Wen HY, Zhang M, Jia DR, Liu JQ. Maternal divergence and phylogeographical relationships between Hippophae gyantsensis and H. rhamnoides subsp. Yunnanensis. J Plant Ecol (Chinese Version), 2009, 33: 1-11.

[4]

Dobeš CH, Mitchell-Olds T, Koch MA. Extensive chloroplast haplotype variation indicates Pleistocene hybridization and radiation of North American Arabis drummondii, A. × divaricarpa, and A. holboellii (Brassicaceae). Mol Ecol, 2004, 13: 349-370.

[5]

Fujii N, Tomaru N, Okuyama K, Koike T, Mikami T, Ueda K. Chloroplast DNA phylogeography of Fagus crenata (Fagaceae) in Japan. Plant Syst Evol, 2002, 232: 21-33.

[6]

Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices (ver. 2.9.3), http://www2.unil.ch/popgen/softwares/fstat.html

[7]

Gross R, Gum B, Retter R, Kuhn R. Genetic introgression between Arctic charr (Salvelinus alpinus) and brook trout (Salvelinus fontinalis) in Bavarian hatchery stocks inferred from nuclear and mitochondrial DNA markers. Aquac Int, 2004, 12: 19-32.

[8]

Jensen RJ, Ciofani KM, Miramontes LC (2002) Lines, outlines, and landmarks: morphometric analyses of leaves of Acer rubrum, Acer saccharinum (Aceraceae) and their hybrid. Taxon, 51: 475–492. http://www.jstor.org/stable/1554860

[9]

Kikuchi S, Shibata M. Development of polymorphic microsatellite markers in Acer mono Maxim. Mol Ecol Resour, 2008, 8: 339-341.

[10]

Langella O (2002) Population 1.2.28. Logiciel de génétique des populations. Laboratoire Populations, génétique et évolution, CNRS UPR9034, Gif-sur-Yvette.,http://www.pge.cnrs-gif.fr/bioinfo/populations/index.php

[11]

Lian CL, Oishi R, Miyashita N, Nara K, Nakaya H, Wu B, Zhou Z, Hogetsu T. Genetic structure and reproduction dynamics of Salix reinii during primary succession on Mount Fuji, as revealed by nuclear and chloroplast microsatellite analysis. Mol Ecol, 2003, 12: 609-618.

[12]

Liu CP, Tsuda Y, Shen HL, Hu LJ, Saito Y, Ide Y. Genetic structure and hierarchical population divergence history of Acer mono var. mono in South and Northeast China. PLoS ONE, 2014 9 1 e87187

[13]

Nei M, Tajima F, Tateno Y. Accuracy of estimated phylogenetic trees from molecular data. J Mol Evol, 1983, 19: 153-170.

[14]

Ogata K. A dendrological studies on the Japanese Aceraceae, with special reference to the geographical distribution. Bull Tokyo Univ For, 1965, 60: 1-99.

[15]

Ohashi H. Nomenclature of Acer pictum Thunberg ex Murray and its Infraspecific Taxa (Aceraceae). J Jpn Bot, 1993, 68: 315-325.

[16]

Okaura T, Harada K. Phylogeographical structure revealed by chloroplast DNA variation in Japanese beech (Fagus crenata Blume). Heredity, 2002, 88: 322-329.

[17]

Okaura T, Quang NC, Ubukata M, Harada K. Phylogegraphic structure and late Quaternary population history of the Japanese oak Quercus mongolica var. crispula and related species revealed by chloroplast 16 DNA variation. Genes Genet Syst, 2007, 82: 465-477.

[18]

Pfosser MF, Guzy-Wrobelska J, Sun BY, Stuessy TF, Sugawara T, Fujii N. The origin of species of Acer (Sapindaceae) endemic to Ullung island, Korea. Syst Bot, 2002, 27: 351-367.

[19]

Pritchard JK, Wen XQ, Falush D (2007) STRUCTURE (version 2.2). University of Chicago, Chicago, http://pritch.bsd.uchicago.edu/software

[20]

Rieseberg LH, Raymond O, Rosenthal DM, Lai Z, Livingstone K, Nakazato T, Durphy JL, Schwarzbach AE, Donovan LA, Lexer C. Major ecological transitions in wild sunflowers facilitated by hybridization. Science, 2003, 301: 1211-1216.

[21]

Saeki I, Murakami N. Chloroplast DNA phylogeography of the endangered Japanese red maple (Acer pycnanthum): the spatial configuration of wetlands shapes genetic diversity. Divers Distrib, 2009, 15: 917-927.

[22]

Satake G, Hara K, Hara H, Watari S, Tominali U. Wild flowers of Japan: woody plants, 1993, Tokyo: Heibonsha.

[23]

Skepner AP, Krane DE. RAPD reveals genetic similarity of Acer saccharum and Acer nigrum. Heredity, 1997, 80: 422-428.

[24]

Tanaka H, Shibata M, Masaki T, Iida S, Niiyama K, Abe S, Kominami Y, Nakashizuka T. Comparative demography of three coexisting Acer species in gaps and under closed canopy. J Veg Sci, 2008, 19: 127-138.

[25]

Terui H, Lian CL, Saito Y, Ide Y. Development of microsatellite markers in Acer capillipes. Mol Ecol Notes, 2006, 6: 77-79.

[26]

Tovar-Sánchez E, Oyama K. Natural hybridization and hybrid zones between Quercus crassifolia and Quercus crassipes (Fagaceae) in Mexico: morphological and molecular evidence. Am J Bot, 2004, 91: 1352-1363.

[27]

van Droogenbroeck B, Kyndt T, Romeijn-Peeters E, van Thuyne W, Goetghebeur P, Romero-Motochi JP, Gheysen G. Evidence of natural hybridization and introgression between Vasconcellea species (Caricaceae) from southern Ecuador revealed by chloroplast, mitochondrial and nuclear DNA markers. Ann Bot, 2006, 97: 793-805.

[28]

van Gelderen DM, de Jong PC, Oterdom HJ. Maples of the world, 1994, Portland: Timber Press.

AI Summary AI Mindmap
PDF

164

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/