Methane emissions from natural and drained peatlands in the Zoigê, eastern Qinghai-Tibet Plateau

Wenchang Zhou , Lijuan Cui , Yifei Wang , Wei Li

Journal of Forestry Research ›› 2016, Vol. 28 ›› Issue (3) : 539 -547.

PDF
Journal of Forestry Research ›› 2016, Vol. 28 ›› Issue (3) : 539 -547. DOI: 10.1007/s11676-016-0343-x
Original Paper

Methane emissions from natural and drained peatlands in the Zoigê, eastern Qinghai-Tibet Plateau

Author information +
History +
PDF

Abstract

Peatlands are one of the major natural sources of methane (CH4), but the level of CH4 efflux is uncertain, especially in alpine peatlands. In this study, CH4 emission fluxes from natural and drained peatlands on the Qinghai-Tibet Plateau, southwest China, were measured from June to October in 2013 using the opaque static chamber technique and the Fast Greenhouse Gas Analyzer (DLT-100, Los Gatos Research Corp.). CH4 emission fluxes ranged from 2.07 to 56.33 mg m−2 h−1 in natural peatlands and from 0.02 to 0.42 mg m−2 h−1 in drained peatlands. Mean CH4 emission flux was 19.13 mg m−2 h−1 in natural peatlands and 0.14 mg m−2 h−1 in drained peatlands. These results showed that drainage led to a significant decrease in CH4 emissions. CH4 emission fluxes for all sampling plots were significantly correlated with variation in water table depth for linear (R 2 = 0.453, P < 0.01) and exponential functions (R 2 = 0.429, P < 0.01).

Keywords

Drainage / CH4 emission / Peatland / Zoigê Plateau

Cite this article

Download citation ▾
Wenchang Zhou, Lijuan Cui, Yifei Wang, Wei Li. Methane emissions from natural and drained peatlands in the Zoigê, eastern Qinghai-Tibet Plateau. Journal of Forestry Research, 2016, 28(3): 539-547 DOI:10.1007/s11676-016-0343-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ballantyne DM, Hribljan JA, Pypker TG, Chimner RA. Long-term water table manipulations alter peatland gaseous carbon fluxes in Northern Michigan. Wetlands Ecol Manag, 2014, 22(1): 35-47.

[2]

Batjes NH. Total carbon and nitrogen in the soils of the world. Eur J Soil Sci, 1996, 47(2): 151-163.

[3]

Bubier JL, Moore TR, Juggins S. Predicting Methane emission from bryophyte distribution in northern Canadian peatlands. Ecology, 1995, 76(3): 677-693.

[4]

Chen H, Yao S, Wu N, Wang Y, Luo P, Tian J, Gao YH, Sun G. Determinants influencing seasonal variations of methane emissions from alpine wetlands in Zoige Plateau and their implications. J Geophys Res, 2008, 113(D12303): 1-10.

[5]

Chen H, Wu N, Yao S, Gao Y, Wang Y, Tian J, Yuan X. Diurnal variation of methane emissions from an alpine wetland on the eastern edge of Qinghai-Tibetan Plateau. Environ Monit Assess, 2010, 164(1): 21-28.

[6]

Chen H, Wu N, Wang Y, Zhu D, Zhu Q, Yang G, Gao YH, Fang XQ, Wang X, Peng CH. Inter-annual variations of methane emission from an open fen on the Qinghai-Tibetan Plateau: a three-year study. PLoS ONE, 2013, 8(1): 173-185.

[7]

Chowdhury TR, Dick RP. Ecology of aerobic methanotrophs in controlling methane fluxes from wetlands. Appl Soil Ecol, 2013, 65: 8-22.

[8]

Deppe M, Knorr KH, McKnight DM, Blodau C. Effects of short-term drying and irrigation on CO2 and CH4 production and emission from mesocosms of a northern bog and an alpine fen. Biogeochemistry, 2010, 100(1): 89-103.

[9]

Ding WX, Cai ZC, Tsuruta H, Li XP. Key factors affecting spatial variation of methane emissions from freshwater marshes. Chemosphere, 2003, 51(3): 167-173.

[10]

Ding WX, Cai ZC, Wang DX. Preliminary budget of methane emissions from natural wetlands in China. Atmos Environ, 2004, 38(5): 751-759.

[11]

Dise NB, Gorham E, Verry ES. Environmental factors controlling methane emissions from peatlands in northern Minnesota. J Geophys Res, 1993, 98(D6): 10583-10594.

[12]

Fechner EJ, Hemond HF. Methane transport and oxidation in the unsaturated zone Sphagnum peatland. Global Biogeochem Cycles, 1992, 6(1): 33-44.

[13]

Franchini AG, Erny I, Zeyer J. Spatial variability of methane emissions from Swiss alpine fens. Wetlands Ecol Manag, 2014, 22(4): 383-397.

[14]

Fung I, John J, Lerner J, Matthews E, Prather M, Steele LP, Fraser PJ. Three-dimensional model synthesis of the global methane cycle. J Geophys Res, 1991, 96(D7): 13033-13065.

[15]

Furukawa Y, Inubushi K, Ali M, Itang AM, Tsuruta H. Effect of changing groundwater levels caused by land-use changes on greenhouse gas fluxes from tropical peat lands. Nutr Cycl Agroecosyst, 2005, 71(1): 81-91.

[16]

Glenn S, Heyes A, Moore T. Carbon dioxide and methane fluxes from drained peat soils, southern Quebec. Global Biogeochem Cycles, 1993, 7(2): 247-257.

[17]

Harriss RC, Sebacher DI, Day FP Jr. Methane flux in the great dismal swamp. Nature, 1982, 297: 673-674.

[18]

Heikkinen JEP, Maljanen M, Aurela M, Hargreaves KJ, Martikainen PJ. Carbon dioxide and methane dynamics in a sub-Arctic peatland in northern Finland. Polar Res, 2002, 21(1): 49-62.

[19]

Hirota M, Tang YH, Hu QW, Hirata S, Kato T, Mo WH, Cao GM, Mariko S. Methane emissions from different vegetation zones in a Qinghai-Tibetan Plateau wetland. Soil Biol Biochem, 2004, 36(5): 737-748.

[20]

IPCC (Intergovernmental Panel on Climate Change). Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM. Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change, 2013, Cambridge: Cambridge University Press 1 1535

[21]

Jiang CS, Wang YS, Hao QJ, Song CC. Effect of land-use change on CH4 and N2O emissions from freshwater marsh in northeast China. Atmos Environ, 2009, 43(21): 3305-3309.

[22]

Lai DYF. Modelling the effects of climate change on methane emission from a northern ombrotrophic bog in Canada. Environ Geol, 2009, 58(6): 1197-1206.

[23]

Lelieveld J, Crutzen PJ, Dentener FJ. Changing concentration, lifetime and climate forcing of atmospheric methane. Tellus B, 1998, 50(2): 128-150.

[24]

Li BQ, Yu ZB, Liang ZM, Song KC, Li HX, Wang Y, Zhang WJ, Acharya K. Effects of climate variations and human activities on runoff in the Zoige alpine wetland in the eastern edge of the Tibetan Plateau. J Hydrol Eng, 2014, 19(5): 1026-1035.

[25]

Liebner S, Schwarzenbach SP, Zeyer J. Methane emissions from an alpine fen in central Switzerland. Biogeochemistry, 2012, 109(1): 287-299.

[26]

Macdonald JA, Fowler D, Hargreaves KJ, Skiba U, Leith ID, Murray MB. Methane emission rates from a northern wetland; response to temperature, water table and transport. Atmos Environ, 1998, 32(19): 3219-3227.

[27]

Maljanen M, Hytönen J, Martikainen PJ. Fluxes of N2O, CH4 and CO2 on afforested boreal agricultural soils. Plant Soil, 2001, 231(1): 113-121.

[28]

Martikainen PJ, Nykänen H, Alm J, Silvola J. Change in fluxes of carbon dioxide, methane and nitrous oxide due to forest drainage of mire sites of different trophy. Plant Soil, 1995, 168(1): 571-577.

[29]

Mastepanov M, Sigsgaard C, Dlugokencky EJ, Houweling S, Strom L, Tamstorf MP, Christensen TR. Large tundra methane burst during onset of freezing. Nature, 2008, 456: 628-630.

[30]

McEwing KR, Fisher JP, Zona D. Environmental and vegetation controls on the spatial variability of CH4 emission from wet-sedge and tussock tundra ecosystems in the Arctic. Plant Soil, 2015, 388(1): 37-52.

[31]

Moore TR, Knowles R. Methane emissions from fen, bog and swamp peatlands in Quebec. Biogeochemistry, 1990, 11(1): 45-61.

[32]

Munir TM, Strack M. Methane flux influenced by experimental water table drawdown and soil warming in a dry boreal continental bog. Ecosystems, 2014, 17: 1271-1285.

[33]

Pelletier L, Moore TR, Roulet NT, Garneau M, Beaulieu-Audy V. Methane fluxes from three peatlands in the La Grande Rivière watershed, James Bay lowland, Canada. J Geophys Res, 2007, 112(G01018): 1-12.

[34]

Roulet NT, Ash R, Quinton W, Moore T. Methane Flux from drained northern peatlands: effect of a persistent water-table lowering on flux. Global Biogeochem Cycles, 1993, 7(4): 749-769.

[35]

Salm JO, Maddison M, Tammik S, Soosaar K, Truu J, Mander U. Emissions of CO2, CH4 and N2O from undisturbed, drained and mined peatlands in Estonia. Hydrobiologia, 2012, 692(1): 41-55.

[36]

Song WM, Wang H, Wang GS, Chen LT, Jin ZN, Zhuang QL, He JS. Methane emissions from an alpine wetland on the Tibetan Plateau: neglected but vital contribution of the nongrowing season. J Geophys Res, 2015, 120(8): 1475-1490.

[37]

Strack M, Waddington JM, Tuittila ES. Effect of water table drawdown on northern peatland methane dynamics: implications for climate change. Global Biogeochem Cycles, 2004, 18(4): 286-289.

[38]

Sun XX, Mu CC, Song CC. Seasonal and spatial variations of methane emissions from montane wetlands in northeast China. Atmos Environ, 2011, 45(10): 1809-1816.

[39]

Urbanová Z, Bárta J, Picek T. Methane emissions and methanogenic Archaea on pristine, drained and restored mountain peatlands, Central Europe. Ecosystems, 2013, 16(4): 664-677.

[40]

Valentine DW, Holland EA, Schimel DS. Ecosystem and physiological controls over methane production in northern wetlands. J Geophys Res, 1994, 99(D1): 1563-1571.

[41]

Wei D, Xu R, Tarchen T, Dai DX, Wang YS, Wang YH. Revisiting the role of CH4 emissions from alpine wetlands on the Tibetan Plateau: evidence from two in situ measurements at 4758 and 4320 m above sea level. J Geophys Res, 2015, 120(9): 473-484.

[42]

West AE, Brooks PD, Fisk MC, Smith LK, Holland EA, Jaeger CH, Babcock S, Lai RS, Schmidt SK. Landscape patterns of CH4 fluxes in an alpine tundra ecosystem. Biogeochemistry, 1999, 45(3): 243-264.

[43]

Whiting GJ, Chanton JP. Plant-dependent methane emission in a subarctic Canadian fen. Global Biogeochem Cycles, 1992, 6(3): 225-231.

[44]

Wickland KP, Striegl RG, Schmidt SK, Mast MA. Methane flux in subalpine wetland and unsaturated soils in the southern Rocky Mountains. Global Biogeochem Cycles, 1999, 13(1): 101-113.

[45]

Wickland KP, Striegl RG, Mast MA, Clow DW. Carbon gas exchange at a southern Rocky Mountain wetland, 1996–1998. Global Biogeochem Cycles, 2001, 15(2): 321-335.

[46]

Xiang SA, Guo RQ, Wu N, Sun SC. Current status and future prospects of Zoige Marsh in eastern Qinghai-Tibet Plateau. Ecol Eng, 2009, 35(4): 553-562.

[47]

Yang JS, Liu JS, Hu XJ, Li XX, Wang Y, Li HY. Effect of water table level on CO2, CH4 and N2O emissions in a freshwater marsh of northeast China. Soil Biol Biochem, 2013, 61: 52-60.

[48]

Yu ZC, Loisel J, Brosseau DP, Beilman DW, Hunt SJ. Global peatland dynamics since the Last Glacial Maximum. Geophys Res Lett, 2010, 37(13): 69-73.

[49]

Zhang WJ, Lu QF, Song KC, Qin GH, Wang Y, Wang X, Li HX, Li J, Liu GD, Li H. Remotely sensing the ecological influences of ditches in Zoige peatland, eastern Tibetan Plateau. Int J Remote Sens, 2014, 35(13): 5186-5197.

[50]

Zhao KY, He CQ. Influence of human activities on the mire in Zoige Plateau and countermeasure. Sci Geogr Sin, 2000, 20(5): 444-449. (in Chinese with English abstract)

[51]

Zhu XY, Song CC, Guo YD, Sun XX, Zhang XH, Miao YQ. Methane emissions from temperate herbaceous peatland in the Sanjiang Plain of northeast China. Atmos Environ, 2014, 92: 478-483.

AI Summary AI Mindmap
PDF

120

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/