PDF
Abstract
The role of plant eIF5A proteins in multiple biological processes, such as protein synthesis regulation, translation elongation, mRNA turnover, programmed cell death and stress tolerance is well known. Toward using these powerful proteins to increase stress tolerance in agricultural plants, in the present study, we cloned and characterized PsneIF5A2 and PsneIF5A4 from young poplar (P. simonii × P. nigra) leaves. The deduced amino acid sequences of PsneIF5A2 and PsneIF5A4 were 98 % similar to each other, and they are orthologs of eIF5A1 in Arabidopsis. In a subcellular localization analysis, PsneIF5A2 and PsneIF5A4 proteins were localized in the nucleus and cytoplasm. qRT-PCR analysis showed that PsneIF5A2 and PsneIF5A4 were transcribed in poplar flowers, stem, leaves, and roots. In addition, they were also induced by abiotic stresses. Transgenic yeast expressing PsneIF5A2 and PsneIF5A4 had increased salt, heavy metal, osmotic, oxidative tolerance. Our results suggest that PsneIF5A2 and PsneIF5A4 are excellent candidates for genetic engineering to improve salt and heavy metal tolerance in agricultural plants.
Keywords
Abiotic tolerance
/
eIF5A
/
Populus simonii × P. nigra
/
Subcellular localization
/
Yeast
Cite this article
Download citation ▾
Tangchun Zheng, Lina Zang, Lijuan Dai, Chuanping Yang, Guanzheng Qu.
Two novel eukaryotic translation initiation factor 5A genes from Populus simonii × P. nigra confer tolerance to abiotic stresses in Saccharomyces cerevisiae.
Journal of Forestry Research, 2016, 28(3): 453-463 DOI:10.1007/s11676-016-0266-6
| [1] |
An Y, Wang YC, Lou LL, Zheng TC, Qu GZ. A novel zinc-finger-like gene from Tamarix hispida is involved in salt and osmotic tolerance. J Plant Res, 2011, 124: 689-697.
|
| [2] |
Benne R, Brown-Luedi ML, Hershey JW. Purification and characterization of protein synthesis initiation factors eIF-1 eIF-4C eIF-4D and eIF-5 from rabbit reticulocytes. J Biol Chem, 1978, 253: 3070-3077.
|
| [3] |
Chamot D, Kuhlemeier C. Differential expression of genes encoding the hypusine-containing translation initiation factor eIF-5A in tobacco. Nucleic Acids Res, 1992, 20: 665-669.
|
| [4] |
Chou WC, Huang YW, Tsay WS, Chiang TY, Huang DD, Huang HJ. Expression of genes encoding the rice translation initiation factor eIF5A is involved in developmental and environmental responses. Physiol Plant, 2004, 121: 50-57.
|
| [5] |
Feng H, Chen Q, Feng J, Zhang J, Yang X, Zuo J. Functional characterization of the Arabidopsis eukaryotic translation initiation factor 5A-2 that plays a crucial role in plant growth and development by regulating cell division cell growth and cell death. Plant Physiol, 2007, 144: 1531-1545.
|
| [6] |
Gregio AP, Cano VP, Avaca JS, Valentini SR, Zanelli CF. eIF5A has a function in the elongation step of translation in yeast. Biochem Biophys Res Commun, 2009, 380: 785-790.
|
| [7] |
Hanawa-Suetsugu K, Sekine S, Sakai H, Hori-Takemoto C, Terada T, Unzai S, Tame JR, Kuramitsu S, Shirouzu M, Yokoyama S. Crystal structure of elongation factor P from Thermus thermophilus HB8. Proc Natl Acad Sci USA, 2004, 101: 9595-9600.
|
| [8] |
Hopkins MT, Lampi Y, Wang TW, Liu Z, Thompson JE. Eukaryotic translation initiation factor 5A is involved in pathogen-induced cell death and development of disease symptoms in Arabidopsis. Plant Physiol, 2008, 148: 479-489.
|
| [9] |
Jenkins ZA, Hååg PG, Johansson HE. Human eIF5A2 on chromosome 3q25-q27 is a phylogenetically conserved vertebrate variant of eukaryotic translation initiation factor 5A with tissue-specific expression. Genomics, 2001, 71: 101-109.
|
| [10] |
Kang HA, Hershey JWB. Effect of initiation factor eIF-5A depletion on protein synthesis and proliferation of Saccharomyces cerevisiae. J Biol Chem, 1994, 269: 3934-3940.
|
| [11] |
Kang HA, Schwelberger HG, Hershey JWB. Translation initiation factor eIF-5A the hypusine-containing protein is phosphorylated on serine in Saccharomyces cerevisiae. J Biol Chem, 1993, 268: 14750-14756.
|
| [12] |
Kemper WM, Berry KW, Merrick WC. Purification and properties of rabbit reticulocyte protein synthesis initiation factors M2Balpha and M2Bbeta. J Biol Chem, 1976, 251: 5551-5557.
|
| [13] |
Kim KK, Hung LW, Yokota H, Kim R, Kim SH. Crystal structures of eukaryotic translation initiation factor 5A from Methanococcus jannaschii at 1.8 A resolution. Proc Natl Acad Sci USA, 1998, 95: 10419-10424.
|
| [14] |
Klier H, Wohl T, Eckerskorn C, Magdolen V, Lottspeich F. Determination and mutational analysis of the phosphorylation site in the hypusine-containing protein Hyp2p. FEBS Lett, 1993, 334: 360-364.
|
| [15] |
Kyrpides NC, Woese CR. Universally conserved translation initiation factors. Proc Natl Acad Sci USA, 1998, 95: 224-228.
|
| [16] |
Lee EH, Hyun DH, Park EH, Lim CJ. A second protein disulfide isomerase plays a protective role against nitrosative and nutritional stresses in Schizosaccharomyces pombe. Mol Biol Rep, 2010, 37: 3663-3671.
|
| [17] |
Liu Z, Duguay J, Ma F, Wang TW, Tshin R, Hopkins MT, McNamara L, Thompson JE. Modulation of eIF5A1 expression alters xylem abundance in Arabidopsis thaliana. J Exp Bot, 2008, 59: 939-950.
|
| [18] |
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 2001, 25: 402-408.
|
| [19] |
Ma F, Liu Z, Wang TW, Hopkins MT, Peterson CA, Thompson JE. Arabidopsis eIF5A3 influences growth and the response to osmotic and nutrient stress. Plant Cell Environ, 2010, 33: 1682-1696.
|
| [20] |
Niwa Y. A synthetic green fluorescent protein gene for plant biotechnology. Plant Biotechnol, 2003, 20: 1-11.
|
| [21] |
Okay S, Derelli E, Unver T. Transcriptome-wide identification of bread wheat WRKY transcription factors in response to drought stress. Mol Genet Genomics, 2014, 289: 765-781.
|
| [22] |
Pay A, Heberle-Bors E, Hirt H. Isolation and sequence determination of the plant homologue of the eukaryotic initiation factor 4D cDNA from alfalfa Medicago sativa. Plant Mol Biol, 1991, 17: 927-929.
|
| [23] |
Pollard VW, Malim MH. The HIV-1 Rev protein. Annu Rev Microbiol, 1998, 52: 491-532.
|
| [24] |
Requejo R, Tena M. Maize response to acute arsenic toxicity as revealed by proteome analysis of plant shoots. Proteomics, 2006, 6: S156-S162.
|
| [25] |
Rosorius O, Reichart B, Krätzer F, Heger P, Dabauvalle MC, Hauber J. Nuclear pore localization and nucleocytoplasmic transport of eIF-5A: evidence for direct interaction with the export receptor CRM1. J Cell Sci, 1999, 112: 2369-2380.
|
| [26] |
Saini P, Eyler DE, Green R, Dever TE. Hypusine-containing protein eIF5A promotes translation elongation. Nature, 2009, 459: 118-121.
|
| [27] |
Tamura K, Dudley J, Ne M, Kumar S. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol, 2007, 24: 1596-1599.
|
| [28] |
Teng YB, Ma XX, He YX, Jiang YL, Du J, Xiang C, Chen Y, Zhou CZ. Crystal structure of Arabidopsis translation initiation factor eIF-5A2. Proteins, 2009, 77: 736-740.
|
| [29] |
Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins D. The ClustalX windows interface: exible strategies for multiple sequence alignment aided by quality analysis tools. Nucl Acids Res, 1997, 25: 4876-4882.
|
| [30] |
Thompson JE, Hopkins MT, Taylor C, Wang TW. Regulation of senescence by eukaryotic translation initiation factor 5A: implications for plant growth and development. Trends Plant Sci, 2004, 9: 174-179.
|
| [31] |
Wang TW, Lu L, Wang D, Thompson JE. Isolation and characterization of senescence-induced cDNAs encoding deoxyhypusine synthase and eucaryotic translation initiation factor 5A from tomato. J Biol Chem, 2001, 276: 17541-17549.
|
| [32] |
Wang TW, Lu L, Zhang CG, Taylor C, Thompson JE. Pleiotropic effects of suppressing deoxyhypusine synthase expression in Arabidopsis thaliana. Plant Mol Biol, 2003, 52: 1223-1235.
|
| [33] |
Wang L, Xu C, Wang C, Wang Y. Characterization of a eukaryotic translation initiation factor 5A homolog from Tamarix androssowii involved in plant abiotic stress tolerance. BMC Plant Biol, 2012, 12 118
|
| [34] |
Wang C, Deng P, Chen L, Wang X, Ma H, Hu W, Yao N, Feng Y, Chai R, Yang G, He G. A wheat WRKY transcription factor TaWRKY10 confers tolerance to multiple abiotic stresses in transgenic tobacco. PLoS One, 2013, 8 e65120
|
| [35] |
Xu A, Chen KY. Hypusine is required for a sequence-specific interaction of eukaryotic initiation factor 5A with postsystematic evolution of ligands by exponential enrichment RNA. J Biol Chem, 2001, 276: 2555-2561.
|
| [36] |
Xu J, Zhang B, Jiang C, Ming F. RceIF5A encoding an eukaryotic translation initiation factor 5A in Rosa chinensis can enhance thermotolerance oxidative and osmotic stress resistance of Arabidopsis thaliana. Plant Mol Biol, 2011, 75: 167-178.
|
| [37] |
Yang G, Wang Y, Xia D, Gao C, Wang C, Yang C. Overexpression of a GST gene (ThGSTZ1) from Tamarix hispida improves drought and salinity tolerance by enhancing the ability to scavenge reactive oxygen species. Plant Cell Tissue Organ Cult, 2014, 117: 99-112.
|
| [38] |
Yao M, Ohsawa A, Kikukawa S, Tanaka I, Kimura M. Crystal structure of hyperthermophilic archaeal initiation factor 5A: a homologue of eukaryotic initiation factor 5A (eIF-5A). J Biochem, 2003, 133: 75-81.
|
| [39] |
Zanelli CF, Maragno AL, Gregio AP, Komili S, Pandolfi JR, Mestriner CA, Lustri WR, Valentini SR. eIF5A binds to translational machinery components and affects translation in yeast. Biochem Biophys Res Commun, 2006, 348: 1358-1366.
|
| [40] |
Zhao Y, Sun J, Xu P, Zhang R, Li L. Intron-mediated alternative splicing of wood-associated NAC transcription factor1B regulates cell wall thickening during fiber development in Populus species. Plant Physiol, 2014, 164: 765-776.
|
| [41] |
Zhou JP, Yang ZJ, Feng J, Chi SH, Liu C, Ren ZL. Cloning and analysis of gene encoding wheat translation initiation factor eIF5A. Yi Chuan, 2006, 28: 571-577.
|
| [42] |
Zuk D, Jacobson A. A single amino acid substitution in yeast eIF-5A results in mRNA stabilization. EMBO J, 1998, 17: 2914-2925.
|