BpMADS12 gene role in lignin biosynthesis of Betula platyphylla Suk by transcriptome analysis

Huiyu Li , Yang Yang , Zijia Wang , Xiaohong Guo , Feifei Liu , Jing Jiang , Guifeng Liu

Journal of Forestry Research ›› 2016, Vol. 27 ›› Issue (5) : 1111 -1120.

PDF
Journal of Forestry Research ›› 2016, Vol. 27 ›› Issue (5) : 1111 -1120. DOI: 10.1007/s11676-016-0229-y
Original Paper

BpMADS12 gene role in lignin biosynthesis of Betula platyphylla Suk by transcriptome analysis

Author information +
History +
PDF

Abstract

MADS-box transcription factors show highly diverse regulatory functions in a wide variety of organisms. In this study, we characterized a MADS-box gene (BpMADS12) from the white birch (Betula platyphylla Suk). This gene is a member of the suppressor of overexpression of CO 1/tomato MADS 3 class of MADS-box genes. We generated lines overexpressing BpMADS12 and found that these had higher levels of lignin compared to that observed in nontransgenic lines. Transcriptome analysis revealed numerous changes in gene expression patterns. In total, 8794 differentially expressed genes were identified, including 5006 upregulated unigenes and 3788 downregulated unigenes in BpMADS-overexpression lines. Differentially expressed genes involved in the pathways for lignin and brassinosteroid biosynthesis were significantly enriched and may have contributed to phenotypic changes. The results from a quantitative RT-PCR analysis were consistent those obtained with the transcriptome analysis. Our transcriptome analysis, in combination with measurement of lignin level, indicated that BpMADS12 promotes lignin synthesis through regulation of key enzymes in response to brassinosteroid signaling. These results suggest that this MADS-box protein is crucial to all subsequent structural events and provide a good foundation for studies aiming to elucidate the developmental mechanisms underlying formation of wood.

Keywords

Betula platyphylla / BpMADS12 / Lignin biosynthesis / Transcriptome analysis

Cite this article

Download citation ▾
Huiyu Li, Yang Yang, Zijia Wang, Xiaohong Guo, Feifei Liu, Jing Jiang, Guifeng Liu. BpMADS12 gene role in lignin biosynthesis of Betula platyphylla Suk by transcriptome analysis. Journal of Forestry Research, 2016, 27(5): 1111-1120 DOI:10.1007/s11676-016-0229-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alvarez-Buylla ER, Liljegren SJ, Pelaz S, Gold SE, Burgeff C, Ditta GS, Vergara-Silva F, Yanofsky MF. MADS-box gene evolution beyond flowers: expression in pollen, endosperm, guard cells, roots and trichomes. Plant J, 2001, 24(4): 457-466.

[2]

Arora R, Agarwal P, Ray S, Singh AK, Singh VP, Tyagi AK, Kapoor S. MADS-box gene family in rice: genome-wide identification, organization and expression profiling during reproductive development and stress. BMC Genom, 2007, 8 242

[3]

Burko Y, Shleizer-Burko S, Yanai O, Shwartz I, Zelnik ID, Jacob-Hirsch J, Kela I, Eshed-Williams L, Ori N. A role for APETALA1/fruitfull transcription factors in tomato leaf development. Plant Cell, 2013, 25(6): 2070-2083.

[4]

Decroocq V, Zhu X, Kauffman M, Kyozuka J, Peacock WJ, Dennis ES, Llewellyn DJ. A TM3-like MADS-box gene from Eucalyptus expressed in both vegetative and reproductive tissues. Gene, 1999, 228(1–2): 155-160.

[5]

Elo A, Lemmetyinen J, Turunen ML, Tikka L, Sopanen T. Three MADS-box genes similar to APETALA1 and FRUITFULL from silver birch (Betula pendula). Physiol Plant, 2001, 112: 95-103.

[6]

Elo A, Lemmetyinen J, Novak A, Keinonen K, Porali I, Hassinen M, Sopanen T. BpMADS4 has a central role in inflorescence initiation in silver birch (Betula pendula). Physiol Plant, 2007, 131: 149-158.

[7]

Fujioka S, Yokota T. Biosynthesis and metabolism of brassinosteroids. Annu Rev Plant Biol, 2003, 54: 137-164.

[8]

Garay-Arroyo A, Ortiz-Moreno E, de la Paz Sánchez M, Murphy AS, García-Ponce B, Marsch-Martínez N, de Folter S, Corvera-Poiré A, Jaimes-Miranda F, Pacheco-Escobedo MA, Dubrovsky JG, Pelaz S, Álvarez-Buylla ER. The MADS transcription factor XAL2/AGL14 modulates auxin transport during Arabidopsis root development by regulating PIN expression. EMBO J, 2013, 32(21): 2884-2895.

[9]

Garay-Arroyo A, Ortiz-Moreno E, de la Paz Sánchez M, Murphy AS, García-Ponce B, Marsch-Martínez N, de Folter S, Corvera-Poiré A, Jaimes-Miranda F, Pacheco-Escobedo MA, Dubrovsky JG, Pelaz S, Álvarez-Buylla ER. The MADS transcription factor XAL2/AGL14 modulates auxin transport during Arabidopsis root development by regulating PIN expression. EMBO J, 2013, 32 2884–2895 2013.

[10]

Gutierrez-Cortines ME, Davies B. Beyond the ABCs: ternary complex formation in the control of floral organ identity. Trends Plant Sci, 2000, 5(11): 471-476.

[11]

Higuchi T. Lignin biochemistry: biosynthesis and biodegradation. Wood Sci Technol, 1990, 24(1): 23-63.

[12]

Higuchi T. Biochemistry and molecular biology of wood. 1997, New York: Springer, 131 181

[13]

Iseli C, Jongeneel CV, Bucher P. ESTScan: a program for detecting, evaluating, and reconstructing potential coding regions in EST sequences. Proc Int Conf Intell Syst Mol Biol, 1999, 99: 138-148.

[14]

Kaufmann K, Melzer R, Theissen G. MIKC-type MADS-domain proteins: structural modularity, protein interactions and network evolution in land plants. Gene, 2005, 347(2): 183-198.

[15]

Kim H, Ralph J, Lu FC, Pilate G, Leple JC, Pollet B, Lapierre C. Identification of the structure and origin of thioacidolysis marker compounds for cinnamyl alcohol dehydrogenase deficiency in angiosperms. J Biol Chem, 2002, 277: 47412-47419.

[16]

Kimura Y, Aoki S, Ando E, Kitatsuji A, Watanabe A, Ohnishi M, Takahashi K, Inoue SI, Nakamichi N, Tamada Y, Kinoshita T. A flowering integrator, SOC1, affects stomatal opening in Arabidopsis thaliana. Plant Cell Physiol, 2015, 56(4): 640-649.

[17]

Lemmetyinen J, Hassine M, Elo A, Porali I, Keinonen K, Mäkelä H, Sopanen T. Functional characterization of SEPALLATA3 and AGAMOUS orthologues in silver birch. Physiol Plant, 2004, 121: 149-162.

[18]

Leplé JC, Dauwe R, Morreel K, Storme V, Lapierre C, Pollet B, Naumann A, Kang KY, Kim H, Ruel K, Lefèbvre A, Joseleau JP, Grima-Pettenati J, De Rycke R, Andersson-Gunnerås S, Erban A, Fehrle I, Petit-Conil M, Kopka J, Polle A, Messens E, Sundberg B, Mansfield SD, Ralph J, Pilate G, Boerjan W. Downregulation of cinnamoyl-coenzyme a reductase in poplar: multiple-level phenotyping reveals effects on cell wall polymer metabolism and structure. Plant Cell, 2007, 19: 3669-3691.

[19]

Li H, Jiang L, Youn JH, Sun W, Cheng Z, Jin T, Ma X, Guo X, Wang J, Zhang X, Wu F, Wu C, Kim SK, Wan J. A comprehensive genetic study reveals a crucial role of CYP90D2/D2 in regulating plant architecture in rice (Oryza sativa). New Phytol., 2013, 200(4): 1076-1088.

[20]

Li HY, Wu DY, Wang ZJ, Liu FF, Liu GF, Jiang J. BpMADS12 mediates endogenous hormone signaling: effect on plant development Betula platyphylla. Plant Cell Tissue Organ Cult, 2015

[21]

Lovisetto A, Masiero S, Rahim MA, Mendes MA, Casadoro G. Fleshy seeds form in the basal Angiosperm Magnolia grandiflora and several MADS-box genes are expressed as fleshy seed tissues develop. Evol Dev, 2015, 17(1): 82-91.

[22]

Mao L, Begum D, Chuang HW, Budiman MA, Szymkowiak EJ, Irish EE, Wing RA. JOINTLESS is a MADS-box gene controlling tomato flower abscission zone development. Nature, 2000, 406(6798): 910-913.

[23]

Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods, 2008, 5(7): 621-628.

[24]

Nayar S, Sharma R, Tyagi AK, Kapoor S. Functional delineation of rice MADS29 reveals its role in embryo and endosperm development by affecting hormone homeostasis. J Exp Bot, 2013, 64(14): 4239-4253.

[25]

Noguchi T, Fujioka S, Takatsuto S, Sakurai A, Yoshida S, Li J, Chory J. Arabidopsis det2 is defective in the conversion of (24R)-24-methylcholest-4-en-3-one to (24R)-24-methyl-5alpha -cholestan- 3-one in brassinosteroid biosynthesis. Plant Physiol, 1999, 120: 833-840.

[26]

Pertea G, Huang X, Liang F, Antonescu V, Sultana R, Karamycheva S, Lee Y, White J, Cheung F, Parvizi B, Tsai J, Quackenbush J. TIGR Gene Indices clustering tools (TGICL): a software system for fast clustering of large EST datasets. Bioinformatics, 2003, 19(5): 651-652.

[27]

Podila GK, Cseke LJ, Sen B, Karnosky DF (2004) Application of aspen MADS-BOX genes to alter reproduction and development in trees. United States patent no. US 2004/0019933 A1

[28]

Price AM, Nunn M, Oppenheim FG, Van Dyke TE. De novo bone formation after the sinus lift procedure. J Periodontol, 2011, 82: 1245-1255.

[29]

Qu GZ, Zheng T, Liu G, Wang W, Zang L, Liu H, Yang C. Overexpression of a MADS-box gene from birch (Betula platyphylla) promotes flowering and enhances chloroplast development in transgenic tobacco. PLoS One, 2013, 8 5 e63398

[30]

Ralph J, Akiyama T, Kim H, Lu F, Schatz PF, Marita JM, Ralph SA, Reddy MS, Chen F, Dixon RA. Effects of coumarate 3-hydroxylase down-regulation on lignin structure. J Biol Chem, 2006, 281: 8843-8853.

[31]

Ralph J, Brunow G, Harris PJ, Dixon RA, Schatz PF, Boerjan W. Daayf F, El Hadrami A, Adam L, Ballance GM. Lignifi cation: are lignins biosynthesized via simple combinatorial chemistry or via proteinaceous control and template replication?. Recent advances in polyphenol research. 2008, Oxford: Wiley-Blackwell Publishing, 36 66

[32]

Rounsley SD, Ditta GS, Yanofsky MF. Diverse roles for MADS box genes in Arabidopsis development. Plant Cell, 1995, 7(8): 1259-1269.

[33]

Sakamoto T, Matsuoka M. Characterization of constitutive photomorphoge- nesis and dwarfism homologs in rice (Oryza sativa L.). J Plant Growth Regul, 2006, 25: 245-251.

[34]

Sakamoto T, Morinaka Y, Ohnishi T, Sunohara H, Fujioka S, Ueguchi-Tanaka M, Mizutani M, Sakata K, Takatsuto S, Yoshida S, Tanaka H, Kitano H, Matsuoka M. Erect leaves caused by brassinosteroid deficiency increase biomass production and grain yield in rice. Nat Biotechnol, 2005, 24: 105-109.

[35]

Sarkanen KV. Sarkanen KV, Ludwig CH. Precursors and their polymerization. Lignins, occurrence, formation, structure and reactions. 1971, New York: Wiley-Interscience, 95 163

[36]

Shi R, Sun YH, Li QZ, Heber S, Sederoff R, Chiang VL. Towards a systems approach for lignin biosynthesis in Populus trichocarpa: transcript abundance and specificity of the monolignol biosynthetic genes. Plant Cell Physiol, 2010, 51(1): 144-163.

[37]

Tanabe S, Ashikari M, Fujioka S, Takatsuto S, Yoshida S, Yano M, Yoshimura A, Kitano H, Matsuoka M, Fujisawa Y, Kato H, Iwasaki Y. A novel cytochrome P450 is implicated in brassinosteroid biosynthesis via the characterization of a rice dwarf mutant, dwarf11, with reduced seed length. Plant Cell, 2005, 17: 776-790.

[38]

Walden PD, Lefkowitz GK, Ficazzola M, Gitlin J, Lepor H. Identification of genes associated with stromal hyperplasia and glandular atrophy of the prostate by mRNA differential display. Exp Cell Res, 1998, 245(1): 19-26.

[39]

Weigel D, Meyerowitz EM. The ABCs of floral homeotic genes. Cell, 1994, 78(2): 203-209.

[40]

Wu CY, Trieu A, Radhakrishnan P, Kwok SF, Harris S, Zhang K, Wang J, Wan J, Zhai H, Takatsuto S, Matsumoto S, Fujioka S, Feldmann KA, Pennell RI. Brassinosteroids regulate grain filling in rice. Plant Cell, 2008, 20: 2130-2145.

[41]

Yu LH, Miao ZQ, Qi GF, Wu J, Cai XT, Mao JL, Xiang CB. MADS-box transcription factor AGL21 regulates lateral root development and responds to multiple external and physiological signals. Mol Plant, 2014, 7(11): 1653-1669.

[42]

Yu LH, Miao ZQ, Qi GF, Wu J, Cai XT, Mao JL, Xiang CB. MADS-box transcription factor AGL21 regulates lateral root development and responds to multiple external and physiological signals. Mol Plant, 2014, 7: 1653-1669.

AI Summary AI Mindmap
PDF

112

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/