Non-isothermal crystallization kinetics of wood-flour/polypropylene composites in the presence of β-nucleating agent

Lang Huang , Haigang Wang , Weihong Wang , Qingwen Wang , Yongming Song

Journal of Forestry Research ›› 2016, Vol. 27 ›› Issue (4) : 949 -958.

PDF
Journal of Forestry Research ›› 2016, Vol. 27 ›› Issue (4) : 949 -958. DOI: 10.1007/s11676-016-0209-2
Original Paper

Non-isothermal crystallization kinetics of wood-flour/polypropylene composites in the presence of β-nucleating agent

Author information +
History +
PDF

Abstract

The influence of aryl amide compounds (TMB) as β-nucleating agents, on the non-isothermal crystallization of a wood-flour/polypropylene composite (WF/PP) prepared by compression molding was investigated by wide-angle X-ray diffraction and differential scanning calorimetry. TMB was proved to be an effective β-crystalline nucleating agent for WF/PP. The DSC data showed that the crystallization peak temperature (T p) increased and the half-time (t 1/2) decreased with the addition of TMB. Three theoretical models were used to analyze the non-isothermal crystallization process. The modified Avrami method and Mo method successfully explained the non-isothermal crystallization behavior of PP and its composites. Their activation energies for non-isothermal crystallization were determined basing on the Kissinger method.

Keywords

Crystallization / Biomaterials / Differential scanning calorimetry / Kinetics

Cite this article

Download citation ▾
Lang Huang, Haigang Wang, Weihong Wang, Qingwen Wang, Yongming Song. Non-isothermal crystallization kinetics of wood-flour/polypropylene composites in the presence of β-nucleating agent. Journal of Forestry Research, 2016, 27(4): 949-958 DOI:10.1007/s11676-016-0209-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bogoeva-Gaceva G, Janevski A, Grozdanov A. Crystallization and melting behavior of iPP studied by DSC. J Appl Polym Sci, 1998, 67(3): 395-404.

[2]

Bogoeva-Gaceva G, Janevski A, Mäder E. Characterization of a maleic anhydride-modified polypropylene as an adhesion promoter for glass fiber composites. J Adhes Sci Technol, 2000, 14(3): 363-380.

[3]

Borysiak S, Doczekalska B. Influence of chemical modification of wood on the crystallisation of polypropylene. Holz als Roh-und Werkstoff, 2006, 64(6): 451-454.

[4]

Bouafif H, Koubaa A, Perré P, Cloutier A. Effects of fiber characteristics on the physical and mechanical properties of wood plastic composites. Compos Part A-appl S, 2009, 40(12): 1975-1981.

[5]

Chan CM, Wu J, Li JX, Cheung YK. Polypropylene/calcium carbonate nanocomposites. Polymer, 2002, 43(10): 2981-2992.

[6]

Chen H, Karger-Kocsis J, Wu J, Varga J. Fracture toughness of α-and β-phase polypropylene homopolymers and random-and block-copolymers. Polymer, 2002, 43(24): 6505-6514.

[7]

Coutinho F, Costa TH. Performance of polypropylene–wood fiber composites. Polym Testing, 1999, 18(8): 581-587.

[8]

Dai X, Zhang Z, Wang C, Ding Q, Jiang J, Mai K. A novel montmorillonite with β-nucleating surface for enhancing β-crystallization of isotactic polypropylene. Compos A Appl Sci Manuf, 2013, 49: 1-8.

[9]

Di Lorenzo M, Silvestre C. Non-isothermal crystallization of polymers. Prog Polym Sci, 1999, 24(6): 917-950.

[10]

Faruk O, Bledzki AK, Fink HP, Sain M. Biocomposites reinforced with natural fibers: 2000–2010. Prog Polym Sci, 2012, 37(11): 1552-1596.

[11]

Feng J, Chen M. Effects of La3+-containing additive on crystalline characteristics of isotactic polypropylene. Polym Int, 2003, 52(1): 42-45.

[12]

Grein C. Toughness of neat, rubber modified and filled β-nucleated polypropylene: from fundamentals to applications. Intrinsic molecular mobility and toughness of polymers II. 2005, Berlin Heidelberg: Springer, 43 104

[13]

Grozdanov A, Buzarovska A, Bogoeva-Gaceva G, Avella M, Errico ME, Gentile G. Nonisothermal crystallization kinetics of kenaf fiber/polypropylene composites. Polym Eng Sci, 2007, 47(5): 745-749.

[14]

Herrero CR, Acosta JL. Effect of P0ly (epichl0rhydrin) on the crystallization and compatibility behavior of poly (ethylene oxide)/polyphosphazene blends. Polym J, 1994, 26(7): 786-796.

[15]

Jacoby P, Bersted B, Kissel W, Smith C. Studies on the β-crystalline form of isotactic polypropylene. J Polym Sci Part B, 1986, 24(3): 461-491.

[16]

Jeziorny A. Parameters characterizing the kinetics of the non-isothermal crystallization of poly (ethylene terephthalate) determined by DSC. Polymer, 1978, 19(10): 1142-1144.

[17]

Karger-Kocsis J, Varga J, Ehrenstein G. Comparison of the fracture and failure behavior of injection-molded α- and β-polypropylene in high-speed three-point bending tests. J Appl Polym Sci, 1997, 64(11): 2057-2066.

[18]

Li L, Wang Q, Guo C. The influence of wood flour and compatibilizer (m-TMI-g-PP) on crystallization and melting behavior of polypropylene. J Therm Anal Calorim, 2012, 107(2): 717-723.

[19]

Liang J, Li R. Mechanical properties and morphology of glass bead-filled polypropylene composites. Polym Compos, 1998, 19(6): 698-703.

[20]

Liang J, Li R. Rubber toughening in polypropylene: a review. J Appl Polym Sci, 2000, 77(2): 409-417.

[21]

Liu X, Wu Q. PP/clay nanocomposites prepared by grafting-melt intercalation. Polymer, 2001, 42(25): 10013-10019.

[22]

Liu T, Mo Z, Zhang H. Nonisothermal crystallization behavior of a novel poly (aryl ether ketone): PEDEKmk. J Appl Polym Sci, 1998, 67(5): 815-821.

[23]

Ma L, Li L, Guo C. Influence of m-isopropenyl-α, α-dimethylbenzyl isocyanate and styrene on non-isothermal crystallization behavior of polypropylene. J Therm Anal Calorim, 2010, 101(3): 1101-1109.

[24]

Mathew AP, Oksman K, Sain M. The effect of morphology and chemical characteristics of cellulose reinforcements on the crystallinity of polylactic acid. J Appl Polym Sci, 2006, 101(1): 300-310.

[25]

McGenity P, Hooper J, Paynter C, Riley A, Nutbeem C, Elton N, Adams J. Nucleation and crystallization of polypropylene by mineral fillers: relationship to impact strength. Polymer, 1992, 33(24): 5215-5224.

[26]

Ou R, Guo C, Xie Y, Wang Q. Non-isothermal crystallization kinetics of kevlar fiber-reinforced wood flour/hdpe composites. Bioresources, 2011, 6(4): 4547-4565.

[27]

Ozawa T. Kinetics of non-isothermal crystallization. Polymer, 1971, 12(3): 150-158.

[28]

Tjong SC, Shen JS, Li RKY. Impact fracture toughness of β-form polypropylene. Scr Metall Mater, 1995, 33(3): 503-508.

[29]

Tjong SC, Shen JS, Li RKY. Morphological behaviour and instrumented dart impact properties of β-crystalline-phase polypropylene. Polymer, 1996, 37(12): 2309-2316.

[30]

Varga J, Menyhárd A. Effect of solubility and nucleating duality of N, N’-dicyclohexyl-2, 6-naphthalenedicarboxamide on the supermolecular structure of isotactic polypropylene. Macromolecules, 2007, 40(7): 2422-2431.

[31]

Yuan Q, Jiang W, An L, Li RKY. The mechanical and thermal behaviors of glass bead filled polypropylene. Polym Adv Technol, 2004, 15(7): 409-413.

[32]

Yuan Q, Awate S, Misra RDK. Nonisothermal crystallization behavior of polypropylene-clay nanocomposites. Eur Polymer J, 2006, 42(9): 1994-2003.

[33]

Zuiderduin WCJ, Westzaan C, Huetink J, Gaymans RJ. Toughening of polypropylene with calcium carbonate particles. Polymer, 2003, 44(1): 261-275.

AI Summary AI Mindmap
PDF

115

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/