Evapotranspiration of a Populus euphratica forest during the growing season in an extremely arid region of northwest China using the Shuttleworth–Wallace model

Guanlong Gao , Xiaoyou Zhang , Tengfei Yu

Journal of Forestry Research ›› 2016, Vol. 27 ›› Issue (4) : 879 -887.

PDF
Journal of Forestry Research ›› 2016, Vol. 27 ›› Issue (4) : 879 -887. DOI: 10.1007/s11676-015-0199-5
Original Paper

Evapotranspiration of a Populus euphratica forest during the growing season in an extremely arid region of northwest China using the Shuttleworth–Wallace model

Author information +
History +
PDF

Abstract

Thus far, measurements and estimations of actual evapotranspiration (ET) in extremely arid areas are still insufficient. Based on successive observations from June–September 2014, we simulated ET of a Populus euphratica Oliv. forest during the growing season in an extremely arid region of northwest China using the Shuttleworth–Wallace (S–W) model. Simulated ET values were compared to those of the eddy-covariance (EC) method on a 1 h interval. With a root mean square error (RMSE), relative error (RE) and mean absolute error (MAE) of 0.192, 3.100 and 0.165 mm h−1, respectively, model performance was not satisfactory. In particular, on days with strong winds (Sep. 11–13), deviations between simulated and observed ET values increased to 0.275, 0.878 and 0.251 mm h−1, RMSE, RE and MAE respectively. These values were significantly greater than those in other study periods and were most likely owing to sharp increases in wind speed. As a result, there were substantial advective effects, which is not consistent with the assumption of the S–W model that there are no advective effects or mesoscale circulation patterns induced by surface discontinuities.

Keywords

Evapotranspiration / Extremely arid region / Populus euphratica Oliv / Shuttleworth–Wallace model

Cite this article

Download citation ▾
Guanlong Gao, Xiaoyou Zhang, Tengfei Yu. Evapotranspiration of a Populus euphratica forest during the growing season in an extremely arid region of northwest China using the Shuttleworth–Wallace model. Journal of Forestry Research, 2016, 27(4): 879-887 DOI:10.1007/s11676-015-0199-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Allen SJ, Grime VL. Measurements of transpiration from savahha shrubs using sap flow gauges. Agric For Meteorol, 1995, 75(1–3): 23-41.

[2]

Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration-guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper, p. 56

[3]

Baldocchi D, Falge E, Gu LH, Olson R, Hollinger D, Running S, Anthoni P, Bernhofer C, Davis K, Evans R, Fuentes J, Goldstein A, Katul G, Law B, Lee XH, Malhi Y, Meyers T, Munger W, Oeche W, Paw UKT, Pilegaard K, Schmid HP, Valentini R, Verma S, Vesala T, Wilson K, Wofsy S. Fluxnet: a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull Am Meteorol Soc, 2001, 82(11): 2415-2434.

[4]

Brisson N, Itier B, L’Hotel JC, Lorendeau JY. Parameterisation of the Shuttleworth–Wallace model to estimate daily maximum transpiration for use in crop models. Ecol Model, 1998, 107: 159-169.

[5]

Burba G, Schmidt A, Scott RL, Nakai T, Kathilankal J, Fratini G, Hanson C, Law B, McDermitt DK, Eckles R, Furtaw M, Velgersdyk M. Calculating CO2 and H2O eddy covariance fluxes from an enclosed gas analyzer using an instantaneous mixing ratio. Glob Chang Biol, 2012, 18(1): 385-399.

[6]

Colaizzi PD, Kustas WP, Anderson MC, Agam N, Tolk JA, Evett SR, Howell TA, Gowda PH, O’Shaughnessy SA. Two-source energy balance model estimates of evapotranspiration using component and composite surface temperatures. Adv Water Resour, 2012, 50: 134-151.

[7]

Dolman AJ. A Multiple-Source Land-Surface Energy Balance Model for Use in General Circulation Models. Agric For Meteorol, 1993, 65: 21-45.

[8]

Domingo F, Villagarcia L, Brenner AJ, Puigdefabregas J. Evapotranspiration model for semi-arid shrub-lands tested against data from SE Spain. Agric For Meteorol, 1999, 95(2): 67-84.

[9]

Evett SR, Matthias AD, Warrick AW. Energy-balance model of spatially variable evaporation from bare soil. Soil Sci Soc Am J, 1994, 58(6): 1604-1611.

[10]

Falge E, Baldocchi D, Olson R, Anthoni P, Aubinet M, Bernhofer C, Burba G, Ceulemans R, Clement R, Dolman H, Granier A, Gross P, Grünwald T, Hollinger D, Jensen NO, Katul G, Keronen P, Kowalski A, Lai CT, Law BE, Meyers T, Moncrieff J, Moors E, Munger JW, Pilegaard K, Rannik Ü, Rebmann C, Suyker A, Tenhunen J, Tu K, Verma S, Vesala T. Gap filling strategies for defensible annual sums of net ecosystem exchange. Agric For Meteorol, 2001, 107: 43-69.

[11]

Fisher JB, Whittaker RJ, Malhi Y. ET come home: potential evapotranspiration in geographical ecology. Glob Ecol Biogeogr, 2011, 20: 1-18.

[12]

Foken T, Gockede M, Mauder M, Mahrt L, Amiro B, Munger W. Post-field data quality control. 2004, New York: Kluwer Academic Publishers, 181 203

[13]

Garratt J. The internal boundary layer: a review. Boundary-Layer Meteorol, 1992, 50: 171-203.

[14]

Garratt JR. Sensitivity of climate simulations to land-surface and atmospheric boundary-layer treatments: a review. J Climate, 1993, 6: 419-448.

[15]

Gasca-Tucker DL, Acreman MC, Agnew CT, Thompson JR. Estimating evaporation from a wet grassland. Hydrol Earth Syst Sci, 2007, 11(1): 270-282.

[16]

Guan H, Wilson JL. A hybrid dual-source model for potential evaporation and transpiration partitioning. J Hydrol, 2009, 377: 405-416.

[17]

Hou LG, Xiao HL, Si JH, Xiao SC, Zhou MX, Yang YG. Evapotranspiration and crop coefficient of Populus euphratica olive forest during the growing season in the extreme arid region northwest China. Agric Water Manag, 2010, 97: 351-356.

[18]

Hu ZM, Yu GR, Zhou YL, Sun XM, Li YN, Shi PL, Wang YF, Song X, Zheng ZW, Zhang L, Li SG. Partitioning of evapotranspiration and its controls in four grassland ecosystems: application of a two-source model. Agric For Meteorol, 2009, 149(9): 1410-1420.

[19]

Hu ZM, Li SG, Yu GR, Sun XM, Zhang LM, Han SJ, Li YN. Modelling evapotranspiration by combing a two-source model, a leaf stomatal model, and a light-use efficiency model. J Hydrol, 2013, 501: 186-192.

[20]

Hupfer P, Raabe A. Meteorological transition between land and sea in the microscale. Meteorol Z, 1994, 3: 100-103.

[21]

Iritz Z, Lindroth A, Heikinheimo M, Grelle A, Kellner E. Test of a modified Shuttleworth-Wallace estimate of boreal forest evaporation. Agric For Meteorol, 1999, 98–99: 605-619.

[22]

Jarvis PG. The interpretation of the variations in water potential and stomatal conductance found in canopies in the field. Philos Transpir R Soc Lond B, 1976, 273: 596-610.

[23]

Jung M, Reichstein M, Ciais P, Seneviratne SI, Sheffield J, Goulden ML, Bonan G, Cescatti A, Chen JQ, de Jeu R, Dolman AJ, Eugster W, Gerten D, Gianelle D, Gobron N, Heinke J, Kimball J, Law BE, Montagnani L, Mu QZ, Mueller B, Oleson K, Papale D, Richardson AD, Roupsard O, Running S, Tomelleri E, Viovy N, Weber U, Williams C, Wood E, Zaehle S, Zhang K. Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature, 2010, 467: 951-954.

[24]

Kato T, Kimura R, Kamichika M. Estimation of evapotranspiration, transpiration ratio and water-use efficiency from a sparse canopy using a compartment model. Agric Water Manag, 2004, 65(3): 173-191.

[25]

Law BE, Falge E, Gu L, Baldocchi D, Bakwin P, Berbigier P, Davis K, Dolman AJ, Falk M, Fuentes JD, Goldstein A, Granier A, Grelle A, Hollinger D, Janssens IA, Jarvis P, Jensen NO, Katul G, Mahli Y, Matteucci G, Meyers T, Monson R, Munger W, Oechel W, Olson R, Pilegaard K, Paw UKT, Thorgeirsson H, Valentini R, Verma S, Vesala T, Wilson K, Wofsy S. Environmental controls over carbon dioxide and water vapor exchange of terrestrial vegetation. Agric For Meteorol, 2002, 113(1–4): 97-120.

[26]

Li XH, Zhang Q. Estimating the potential evapotranspiration of Poyang Lake Basin using remote sense data and Shuttleworth–Wallace model. Procedia Environ Sci, 2011, 10: 1575-1582.

[27]

Moran MS, Scott RL, Keefer TO, Emmerich WE, Hernandez M, Nearing GS, Paige GB, Cosh MH, O’Neill PE. Partitioning evapotranspiration in semiarid grassland and shrubland ecosystems using time series of soil surface temperature. Agric For Meteorol, 2009, 149(1): 59-72.

[28]

Oki T, Kanae S. Global hydrological cycles and world water resources. Science, 2006, 313(5790): 1068-1072.

[29]

Ortega-Farias S, Poblete-Echeverrı´a C, Brisson N. Parameterization of a two-layer model for estimating vineyard evapotranspiration using meteorological measurements. Agric For Meteorol, 2010, 150: 276-286.

[30]

Reynolds JF, Kemp PR, Tenhunen JD. Effects of long-term rainfall variability on evapotranspiration and soil water distribution in the Chihuahuan Desert: A modeling analysis. Plant Ecol, 2000, 150(1–2): 145-159.

[31]

Scott RL, Huxman TE, Cable WL, Emmerich WE. Partitioning of evapotranspiration and its relation to carbon dioxide exchange in a Chihuahuan Desert shrubland. Hydrol Process, 2006, 20(15): 3227-3243.

[32]

Sene KJ. Parameterisations for energy transfers from a sparse vine crop. Agric For Meteorol, 1994, 71: 1-18.

[33]

Shuttleworth JW. Macrohydrology-The new challenge for process hydrology. J Hydrol, 1988, 100: 31-56.

[34]

Shuttleworth WJ, Gurney RJ. The theoretical relationship between foliage temperature and canopy resistance in sparse crops. Q J R Meteorol Soc, 1990, 116: 497-519.

[35]

Shuttleworth WJ, Wallace JS. Evaporation from sparse crops-an energy combination theory. Q J R Meteorol Soc, 1985, 111: 839-855.

[36]

Si JH, Feng Q, Zhang XY, Liu W, Su YH, Zhang YW. Growing season evapotranspiration from Tamarix ramosissima stands under extreme arid conditions in northwest China. Environ Geol, 2005, 48: 861-870.

[37]

Tourula T, Heikinheimo M. Modelling evapotranspiration from a barley field over the growing season. Agric For Meteorol, 1998, 91(3–4): 237-250.

[38]

Vickers D, Mahrt L. Quality control and flux sampling problems for tower and aircraft data. J Atmos Ocean Technol, 1997, 14: 512-526.

[39]

Wei Z, Liu Y, Xu D, Cai J, Zhang B. Application and comparison of winter wheat canopy resistance estimation models based on the scaling-up of leaf stomatal. Chin Sci Bull, 2013, 58(23): 2909-2916.

[40]

Williams DG, Cable W, Hultine K, Hoedjes JCB, Yepez EA, Simonneaux V, Er-Raki S, Boulet G, de Bruin HAR, Chehbouni A, Hartogensis OK, Timouk F. Evapotranspiration components determined by stable isotope, sap flow and eddy covariance techniques. Agric For Meteorol, 2004, 125(3–4): 241-258.

[41]

Xu C, Singh VP. A review on monthly water balance models for water resources investigations. Water Resour Manag, 1998, 12: 31-50.

[42]

Yang YT, Shang SH, Guan HD. Development of a soil-plant-atmosphere continuum model (HDS-SPAC) based on hybrid dual-source approach and its verification in wheat field. Sci China Technol Sci, 2012, 55(10): 2671-2685.

[43]

Yepez EA, Williams DG, Scott RL, Lin G. Partitioning overstory and understory evapotranspiration in a semiarid savanna woodland from the isotopic composition of water vapor. Agric For Meteorol, 2003, 119(1–2): 53-68.

[44]

Yu GR, Sun XM. Continental ecosystem flux observation principle and method (in Chinese). 2006, Beijing: Higher Education Press, 96.

[45]

Zhang Y, Munkhtsetseg E, Kadota T, Ohata T. An observational study of ecohydrology of a sparse grassland at the edge of the Eurasian cryosphere in Mongolia. J Geophys Research-Atmos, 2005, 110(D14): 85-90.

[46]

Zhang XY, Kang ES, Si JH, Zhou MX. Stem sap flow of individual plant of Populus euphratica and its conversion to forest water consumption (in Chinese). Scientia Silvae Sinicae, 2006, 42(7): 28-32.

[47]

Zhou MC, Ishidaira H, Hapuarachchi HP, Magome J, Kiem AS, Takeuchi K. Estimating potential evapotranspiration using Shuttleworth–Wallace model and NOAA-AVHRR NDVI data to feed a distributed hydrological model over the Mekong River basin. J Hydrol, 2006, 327: 151-173.

[48]

Zhu ZY, Chao LBG, Wang ZQ, Gao RZ. Study on diurnal variation of Populus evapotranspiration based on Shuttleworth-Wallace model (in Chinese). J Hydraul Eng, 2007, 38(5): 582-590.

[49]

Zhu GF, Su YH, Li X, Zhang K, Li CB, Ning N. Modelling evapotranspiration in an alpine grassland ecosystem on Qinghai-Tibetan plateau. Hydrol Process, 2012, 28(3): 610-619.

[50]

Zhu GF, Su YH, Li X, Zhang K, Li CB. Estimating actual evapotranspiration from an alpine grassland on Qinghai-Tibetan plateau using a two-source model and parameter uncertainty analysis by Bayesian approach. J Hydrol, 2013, 476: 42-51.

[51]

Zhu GF, Lu L, Su YH, Wang XF, Cui X, Ma JZ, He JH, Zhang K, Li CB. Energy flux partitioning and evapotranspiration in a sub-alpine spruce forest ecosystem. Hydrol Process, 2014, 28(19): 5093-5104.

AI Summary AI Mindmap
PDF

164

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/