Assessing bacterial communities in the rhizosphere of 8-year-old genetically modified poplar (Populus spp.)

Wenxu Zhu , Yanguang Chu , Changjun Ding , Qinjun Huang , Bingyu Zhang , Weixi Zhang , Xiaohua Su

Journal of Forestry Research ›› 2015, Vol. 27 ›› Issue (4) : 939 -947.

PDF
Journal of Forestry Research ›› 2015, Vol. 27 ›› Issue (4) : 939 -947. DOI: 10.1007/s11676-015-0184-z
Original Paper

Assessing bacterial communities in the rhizosphere of 8-year-old genetically modified poplar (Populus spp.)

Author information +
History +
PDF

Abstract

Microbe communities in rhizosphere ecosystems are important for plant health but there is limited knowledge of them in the rhizospheres of genetically modified (GM) plants, especial for tree species. We used the amplitude sequencing method to analyze the V4 regions of the 16S rRNA gene to identify changes in bacterial diversity and community structure in two GM lines (D520 and D521), one non-genetically modified (non-GM) line and in uncultivated soil. After chimera filtering, 468.133 sequences in the domain Bacteria remained. There were ten dominant taxonomic groups (with >1 % of all sequences) across the samples. 241 of 551 genera (representing a ratio of 97.33 %) were common to all samples. A Venn diagram showed that 1.926 operational taxonomic units (OTUs) were shared by all samples. We found a specific change, a reduction in Chloroflexi, in the microorganisms in the rhizosphere soil planted with poplars. Taken together, the results showed few statistical differences in the bacterial diversity and community structure between the GM line and non-GM line, this suggests that there was no or very limited impact of this genetic modification on the bacterial communities in the rhizosphere.

Keywords

16S rRNA / Transgenic poplar / Bacteria communities / Rhizosphere soil

Cite this article

Download citation ▾
Wenxu Zhu, Yanguang Chu, Changjun Ding, Qinjun Huang, Bingyu Zhang, Weixi Zhang, Xiaohua Su. Assessing bacterial communities in the rhizosphere of 8-year-old genetically modified poplar (Populus spp.). Journal of Forestry Research, 2015, 27(4): 939-947 DOI:10.1007/s11676-015-0184-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Acosta-Martinez V, Dowd SE, Sun Y, Allen V. Tag-encoded pyrosequencing analysis of bacterial diversity in a single soil type as affected by management and land use. Soil Biol Biochem, 2008, 40(11): 2762-2770.

[2]

Acosta-Martínez V, Dowd SE, Sun Y, Wester D, Allen V. Pyrosequencing analysis for characterization of soil bacterial populations as affected by an integrated livestock-cotton production system. Appl Soil Ecol, 2010, 45: 13-25.

[3]

Andreote FD, Carneiro RT, Salles JF, Marcon J, Labate CA, Azevedo JL, Araújo WL. Culture-independent assessment of rhizobiales-related Alphaproteobacteria and the diversity of Methylobacterium in the rhizosphere and rhizoplane of transgenic eucalyptus. Microbial Ecol, 2009, 57(1): 82-93.

[4]

Angle JS. Release of transgenic plants: biodiversity and population-level consideration. Mol Ecol, 1994, 3: 45-50.

[5]

Bomberg M, Münster U, Pumpanen J, Ilvesniemi H, Heinonsalo J. Archaeal communities in boreal forest tree rhizospheres respond to changing soil temperatures. Microbial Ecol, 2011, 62(1): 205-217.

[6]

Bruinsma M, Kowalchuk GA, Van Veen JA. Effects of genetically modified plants on microbial communities and processes in soil. Biol Fertil Soils, 2003, 37: 329-337.

[7]

Bryant DA, Frigaard NU. Prokaryotic photosynthesis and phototrophy illuminated. Trends Microbiol, 2006, 14(11): 488-496.

[8]

Chow ML, Radomski CC, McDermott JM, Davies J, Axelrood PE. Molecular characterization of bacterial diversity in Lodgepole pine (Pinus contorta) rhizosphere soils from British Columbia forest soils differing in disturbance and geographic source. FEMS Microbiol Ecol, 2002, 42: 347-357.

[9]

DeLong EF. Everything in moderation: archaea as ‘non-extremophiles’. Curr opin gene dev, 1998, 8: 649-654.

[10]

Eilers KG, Debenport S, Anderson S, Fierer N. Digging deeper to find unique microbial communities: the strong effect of depth on the structure of bacterial and archaeal communities in soil. Soil Biol Biochem, 2012, 50: 58-65.

[11]

Fierer N, Jackson R. The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci the USA, 2006, 103(3): 626-631.

[12]

Frankenhuyzen KV, Beardmore T. Current status and environmental impact of transgenic forest trees. Can J For Res, 2004, 34: 1163-1180.

[13]

Frigaard NU, Bryant DA. Chlorosomes: antenna organelles in photosynthetic green bacteria complex intracellular structures in prokaryotes. 2006, Berlin Heidelberg: Springer, 79 114

[14]

Garrity GM, Holt JG, Castenholz RW, Pierson BK, Keppen OI, Gorlenko VM. Phylum BVI. Chloroflexi phy. nov. Bergey’s manual of systematic bacteriology. 2001, New York: Springer, 427 446

[15]

He JZ, Xu ZH, Hughes J. Molecular bacterial diversity of a forest soil under residue management regimes in subtropical Australia. FEMS Microbiol Ecol, 2006, 55: 38-47.

[16]

Icoz I, Stotzky G. Fate and effects of insect-resistant Bt crops in soil ecosystems. Soil Biol Biochem, 2008, 40: 559-586.

[17]

Imberger KT, Chiu CY. Spatial changes of soil fungal and bacterial biomass from a sub-alpine coniferous forest to grassland in a humid, sub-tropical region. Biol Fertil Soils, 2001, 33: 105-110.

[18]

Ke X, Lu Y, Conrad R. Different behaviour of methanogenic archaea and Thaumarchaeota in rice field microcosms. FEMS Microbiol Ecol, 2014, 87(1): 18-29.

[19]

Kragelund C, Levantesi C, Borger A, Thelen K, Eikelboom D, Tandoi V, Kong Y, Waarde JVD, Krooneman J, Rossetti S, Thomsen TR, Nielsen PH. Identity, abundance and ecophysiology of filamentous Chloroflexi species present in activated sludge treatment plants. FEMS Microbiol Ecol, 2007, 59(3): 671-682.

[20]

Lamarche J, Hamelin RC. No Evidence of an Impact on the Rhizosphere Diazotroph Community by the expression of Bacillus thuringiensis Cry1Ab toxin by Bt white spruce. Appl Environ Microbiol, 2007, 73: 6577-6583.

[21]

Lamarche J, Stefani FOP, Séguin A, Hamelin RC. Impact of endochitinase-transformed white spruce on soil fungal communities under greenhouse conditions. FEMS Microbiol Ecol, 2011, 76(2): 199-208.

[22]

LeBlanc PM, Hamelin RC, Filion M. Alteration of soil rhizosphere communities following genetic transformation of white spruce. Appl Environ Microbiol, 2007, 73(13): 4128-4134.

[23]

Lin XJ, Tfaily MM, Steinweg JM, Chanton P, Esson K, Yang ZK, Chanton JP, Cooper W, Schadt CW, Kostka JE. microbial community stratification linked to utilization of carbohydrates and phosphorus limitation in a Boreal Peatland at Marcell Experimental Forest, Minnesota, USA. Appl Environ Microbiol, 2014, 80(11): 3518-3530.

[24]

Lottmann J, O’Callaghan M, Baird D, Walter C. Bacterial and fungal communities in the rhizosphere of field-grown genetically modified pine trees (Pinus radiata D.). Environ Biosaf Res, 2010, 9(01): 25-40.

[25]

Miller SR, Strong AL, Jones KL, Ungerer MC. Bar-coded pyrosequencing reveals shared bacterial community properties along the temperature gradients of two alkaline hot springs in Yellowstone National Park. Appl Environ Microbiol, 2009, 75(13): 4565-4572.

[26]

Miller JR, Koren S, Sutton G. Assembly algorithms for next-generation sequencing data. Genomics, 2010, 95(6): 315-327.

[27]

Muyzer G, Waal ED, Uitterlinden AG. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol, 1993, 59: 695-700.

[28]

Nannipieri P, Ascher J, Ceccherini MT, Landi L, Pietramellara G, Renella G. Microbial diversity and soil functions. Eur J Soil Sci, 2003, 54: 655-670.

[29]

Navarro-Noya YE, Gómez-Acata S, Montoya-Ciriaco N, Rojas-Valdez A, Suárez-Arriaga MC, Valenzuela-Encinas C, Jiménez-Bueno N, Verhulst N, Govaerts B, Dendooven L. Relative impacts of tillage, residue management and crop-rotation on soil bacterial communities in a semi-arid agroecosystem. Soil Biol Biochem, 2013, 65: 86-95.

[30]

Nicol GW, Glover LA, Prosser JI. The impact of grassland management on archaeal community structure in upland pasture rhizosphere soil. Environ Microbiol, 2003, 5: 152-162.

[31]

Nubel U, Bateson MM, Vandieken V, Wieland A, Kuhl M, Ward DM. Microscopic examination of distribution and phenotypic properties of phylogenetically diverse chloroflexaceae-related bacteria in hot spring microbial mats. Appl Environ Microbiol, 2002, 68: 4593-4603.

[32]

Oliver KL, Hamelin RC, Hintz WE. Effects of transgenic hybrid aspen overexpressing polyphenol oxidase on rhizosphere diversity. Appl Environ Microbiol, 2008, 74: 5340-5348.

[33]

Oyaizu H, Debrunnervossbrinck B, Mandelco L, Studier JA, Woese CR. The green non-sulfur bacteria; a deep branching in the eubacterial line of descent. Syst Appl Microbiol, 1987, 9: 47-53.

[34]

Pratscher J, Dumont MG, Conrad R. Ammonia oxidation coupled to CO2 fixation by archaea and bacteria in an agricultural soil. Proc Natl Acad Sci, 2011, 108(10): 4170-4175.

[35]

Quirino BF, Pappas GJ, Tagliaferro AC, Collevatti RG, Leonardecz E, Silva MR, Bustamante MM, Krüger RH. Molecular phylogenetic diversity of bacteria associated with soil of the savanna-like Cerrado vegetation. Microbiol Res, 2009, 164: 59-70.

[36]

Roesch LFW, Fulthorpe RR, Riva A, Casella G, Hadwin AKM, Kent AD, Daroub SH, Camargo FAO, Farmerie WG, Triplett EW. Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J, 2007, 1: 283-290.

[37]

Ross KA, Feazel LM, Robertson CE, Fathepure BZ, Wright KE, Turk-MacLeod RM, Chan MM, Held NL, Spear JR, Pace NR. Phototrophic phylotypes dominate mesothermal microbial mats associated with hot springs in Yellowstone National Park. Microbial Ecol, 2012, 64(1): 162-170.

[38]

Simon HM, Dodsworth JA, Goodman RM. Crenarchaeota colonize terrestrial plant roots. Environ Microbiol, 2000, 2: 506-515.

[39]

Sliwinski MK, Goodman RM. Comparison of crenarchaeal consortia inhabiting the rhizosphere of diverse terrestrial plants with those in bulk soil in native environments. Appl Environ Microbiol, 2004, 70: 1821-1826.

[40]

Sogin ML, Morrison HG, Huber JA, Welch MD, Huse SM, Sogin ML, Morrison HG, Huber JA, Welch DM, Huse SM, Neal PR, Arrieta JM, Herndl GJ. Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc Natl Acad Sci, 2006, 103: 12115-12120.

[41]

Stevenson BA, Sparling GP, Schipper LA, Degens BP, Duncan LC. Pasture and forest soil microbial communities show distinct patterns in their catabolic respiration responses at a landscape scale. Soil Biol Biochem, 2004, 36: 49-55.

[42]

Stopnišek N, Gubry-Rangin C, Höfferle Š, Nicol GW, Mandič-Mulec I, Prosser JI. Thaumarchaeal ammonia oxidation in an acidic forest peat soil is not influenced by ammonium amendment. Appl Environ Microbiol, 2010, 76(22): 7626-7634.

[43]

Su XH, Chu YG, Li H, Hou YJ, Zhang BY, Huang QJ, Hu ZM, Huang RF, Tian YC. Expression of multiple resistance genes enhances tolerance to environmental stressors in transgenic poplar (Populus × euramericana ‘Guariento’). PLoS ONE, 2011, 6 9 e24614

[44]

Uroz S, Buée M, Murat C, Frey-klett P, Martin F. Pyrosequencing reveals a contrasted bacterial diversity between oak rhizosphere and surrounding soil. Environ Microbiol Rep, 2010, 2(2): 281-288.

[45]

Walter C, Fladung M, Boerjan W. The 20-year environmental safety record of GM trees. Nat Biotechnol, 2010, 28(7): 656-658.

[46]

Wang JG, Su XH, Ji LL, Zhang BY, Hu ZM, Huang RF, Tian YC. Multiple transgenes Populus × euramericana ‘Guariento’ plants obtained by biolistic bombardment. Chin Sci Bull, 2007, 52: 224-230.

[47]

Woese CR. Bacterial evolution. FEMS Microbiol Rev, 1987, 51(2): 221-271.

[48]

Zhang WX, Chu YG, Ding CJ, Zhang BY, Huang QJ, Hu ZM, Huang RF, Tian YC, Su XH. Transcriptome sequencing of transgenic poplar (Populus × euramericana ‘Guariento’) expressing multiple resistance genes. BMC Genet, 2014, 15 Suppl 1 S7

AI Summary AI Mindmap
PDF

162

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/