Impacts of mixed litter decomposition from Robinia pseudoacacia and other tree species on C loss and nutrient release in the Loess Plateau of China

Xiaoxi Zhang , Zengwen Liu , Bochao Zhu , Yuanhao Bing , Nhu Trung Luc , Liangzhen Du , Zhenhua Zhu

Journal of Forestry Research ›› 2015, Vol. 27 ›› Issue (3) : 525 -532.

PDF
Journal of Forestry Research ›› 2015, Vol. 27 ›› Issue (3) : 525 -532. DOI: 10.1007/s11676-015-0175-0
Original Paper

Impacts of mixed litter decomposition from Robinia pseudoacacia and other tree species on C loss and nutrient release in the Loess Plateau of China

Author information +
History +
PDF

Abstract

The productivity of Robinia pseudoacacia (R.p.) pure forest usually declines at the late growth stage, and reforming it into mixed forests could be a promising way to resolve this problem. When choosing a suitable tree species that can be mixed with R.p., the interspecific relationship is an important issue. Therefore, we gathered the autumn litter fall from R.p. and 10 other species from the Loess Plateau of China were mixed in dual species litterbags (R.p. + each other species) and buried them in soil for a 345 days lab decay incubation. We measured the litter mass loss and nutrient contents to determine whether the nutrient release was affected by mixed species litter decomposition. The impacts of mixed litter decomposition on macro-elements release were more obvious than on micro-elements. The litters with similar substrate quality might show variable impacts on nutrients release in mixed decomposition. The C loss and release of nutrient was improved by descending order when R.p. litter was mixed with Hippophae rhamnoides, Ulmus pumila, Populus simonii, Larix principis-rupprechtii and Quercus liaotungensis (Q.l.). But, except for Q.l., only the other species were recommended as suitable mix-plants for R.p. since promoting a high turnover of the nutrient in the litter compartment and a rapid availability for tree.

Keywords

Robinia pseudoacacia / Leaf litter / Mixed decomposition / Nutrient release

Cite this article

Download citation ▾
Xiaoxi Zhang, Zengwen Liu, Bochao Zhu, Yuanhao Bing, Nhu Trung Luc, Liangzhen Du, Zhenhua Zhu. Impacts of mixed litter decomposition from Robinia pseudoacacia and other tree species on C loss and nutrient release in the Loess Plateau of China. Journal of Forestry Research, 2015, 27(3): 525-532 DOI:10.1007/s11676-015-0175-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alexei VT. Particle size alters litter diversity effects on decomposition. Soil Biol Biochem, 2009, 41: 176-178.

[2]

Ball BA, Hunter MD, Kominoski JS, Swan CM, Bradford MA. Consequences of non-random species loss for decomposition dynamics: experimental evidence for additive and non-additive effects. J Ecol, 2008, 96: 303-313.

[3]

Ball BA, Bradford MA, Hunter MD. Nitrogen and phosphorus release from mixed litter layers is lower than predicted from single species decay. Ecosystems, 2009, 12: 87-100.

[4]

Berg B, McClaugherty C. Plant litter. 2008, Berlin: Springer

[5]

Bonanomi G, Incerti G, Antignani V, Capodilupo M, Mazzoleni S. Decomposition and nutrient dynamics in mixed litter of Mediterranean species. Plant Soil, 2010, 331: 481-496.

[6]

Cai LJ, Xu YG, Yu WT, Hu BZ, Wu YX. Effects of continuous planting poplar on the soil nutrient contents, microbial biomass, and enzyme activities in lower reaches of Liaohe River Plain, Northeast China. Chin J Ecol, 2013, 32: 337-343.

[7]

De Marco A, Meola A, Maisto G, Giordano M, De Santo AV. Non-additive effects of litter mixtures on decomposition of leaf litters in a Mediterranean maquis. Plant Soil, 2011, 344: 305-317.

[8]

Gartner TB, Cardon ZG. Decomposition dynamics in mixed-species leaf litter. Oikos, 2004, 104: 230-246.

[9]

Gnankambary Z, Bayala J, Malmer A, Nyberg G, Hien V. Decomposition and nutrient release from mixed plant litters of contrasting quality in an agroforestry parkland in the south-Sudanese zone of West Africa. Nutr Cycl Agroecosyst, 2008, 82: 1-13.

[10]

Gusewell S, Gessner MO. N:P ratios influence litter decomposition and colonization by fungi and bacteria in microcosms. Funct Ecol, 2009, 23: 211-219.

[11]

Hattenschwiler S, Jorgensen HB. Carbon quality rather than stoichiometry controls litter decomposition in a tropical rain forest. J Ecol, 2010, 98: 754-763.

[12]

Hattenschwiler S, Tiunov AV, Scheu S. Biodiversity and litter decomposition in terrestrial ecosystems. Annu Rev Ecol Evol Syst, 2005, 36: 191-218.

[13]

Jones JB Jr. Laboratory guide for conducting soil tests and plant analysis. 2001, Boca Raton: CRC Press

[14]

Kominoski JS, Pringle CM, Ball BA, Bradford MA, Coleman DC, Hall DB, Hunter MD. Nonadditive effects of leaf litter species diversity on breakdown dynamics in a detritus-based stream. Ecology, 2007, 88: 1167-1176.

[15]

Kwabiah AB, Voroney RP, Palm CA, Stoskopf NC. Inorganic fertilizer enrichment of soil: effect on decomposition of plant litter under subhumid tropical conditions. Biol Fertil Soils, 1999, 30: 224-231.

[16]

Li QL, Moorhead DL, DeForest JL, Henderson R, Chen JQ, Jensen R. Mixed litter decomposition in a managed Missouri Ozark forest ecosystem. For Ecol Manag, 2009, 257: 688-694.

[17]

Li Q, Zhou DW, Chen XY. The accumulation, decomposition and ecological effects of above-ground litter in terrestrial ecosystem. Acta Ecol Sin, 2014, 34: 3807-3819.

[18]

Liu P, Sun OJ, Huang JH, Li LH, Han XG. Nonadditive effects of litter mixtures on decomposition and correlation with initial litter N and P concentrations in grassland plant species of northern China. Biol Fertil Soils, 2007, 44: 211-216.

[19]

Liu ZW, Duan EJ, Liu ZMJ, Feng SY. Soil polarization under pure stands of different tree varieties in semi-arid hilly areas of the Loess Plateau. Acta Pedol Sin, 2009, 46: 1110-1120.

[20]

Liu P, Huang JH, Sun OJ, Han XG. Litter decomposition and nutrient release as affected by soil nitrogen availability and litter quality in a semiarid grassland ecosystem. Oecologia, 2010, 162: 771-780.

[21]

Liu ZW, Du LZ, Zhang XX, Zhu ZH, Yuan N, Shi TF. Effects of mix-leaf litter decomposition of different trees in the Loess Plateau. Acta Ecol Sin, 2012, 32: 2596-2602.

[22]

Manzoni S, Trofymow JA, Jackson RB, Porporato A. Stoichiometric controls on carbon, nitrogen, and phosphorus dynamics in decomposing litter. Ecol Monogr, 2010, 80: 89-106.

[23]

Mcarthur JV, Aho JM, Rader RB, Mills GL. Interspecific leaf interactions during decomposition in aquatic and floodplain ecosystems. J N Am Benthol Soc, 1994, 13: 57-67.

[24]

Meier CL, Bowman WD. Links between plant litter chemistry, species diversity, and below-ground ecosystem function. Proc Natl Acad Sci USA, 2008, 105: 19780-19785.

[25]

Nilsson MC, Wardle DA, Dahlberg A. Effects of plant litter species composition and diversity on the boreal forest plant–soil system. Oikos, 1999, 86: 16-26.

[26]

Olson J. Energy storage and the balance of producers and decomposition in ecological systems. Ecology, 1963, 44: 332-341.

[27]

Osono T, Takeda H. Potassium, calcium, and magnesium dynamics during litter decomposition in a cool temperate forest. J For Res, 2004, 9: 23-31.

[28]

Pan CD, Wang Q, Ruan X, Li ZH. Biological activity and quantification of potential autotoxins from the leaves of Picea schrenkiana. Chin J Plant Ecol, 2009, 33: 186-196.

[29]

Qu F, Zhang WJ, Liu XP. Decomposition of litter and its nutrient dynamics in Taihang Mountains. Bull Soil Water Conserv, 2010, 30: 41-44.

[30]

Schimel JP, Bennett J. Nitrogen mineralization: challenges of a changing paradigm. Ecology, 2004, 85: 591-602.

[31]

Schimel JP, Hattenschwiler S. Nitrogen transfer between decomposing leaves of different N status. Soil Biol Biochem, 2007, 39: 1428-1436.

[32]

Strickland MS, Osburn E, Lauber C, Fierer N, Bradford MA. Litter quality is in the eye of the beholder: initial decomposition rates as a function of inoculum characteristics. Funct Ecol, 2009, 23: 627-636.

[33]

Yang YH, Zheng L, Duan YZ. Leaf litter decomposition and nutrient release of different stand types in a shelter belt in Xinjiang arid area. Chin J Appl Ecol, 2011, 22: 1389-1394.

[34]

Zhang DQ, Hui DF, Luo YQ, Zhou GY. Rates of litter decomposition in terrestrial ecosystems: global patterns and controlling factors. J Plant Ecol, 2008, 1: 85-93.

[35]

Zhou XH, Talley M, Luo YQ. Biomass, litter, and soil respiration along a precipitation gradient in Southern Great Plains, USA. Ecosystems, 2009, 12: 1369-1380.

AI Summary AI Mindmap
PDF

177

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/