Identification of ISSR markers linked to flowering traits in a representative sample of Eucalyptus cladocalyx

Rodrigo Contreras-Soto , Paulina Ballesta , Eduardo Ruiz , Freddy Mora

Journal of Forestry Research ›› 2015, Vol. 27 ›› Issue (2) : 239 -245.

PDF
Journal of Forestry Research ›› 2015, Vol. 27 ›› Issue (2) : 239 -245. DOI: 10.1007/s11676-015-0149-2
Original Paper

Identification of ISSR markers linked to flowering traits in a representative sample of Eucalyptus cladocalyx

Author information +
History +
PDF

Abstract

Early flowering and flower abundance have long been considered desirable traits in eucalypt breeding programs. In particular, flowers of Eucalyptus cladocalyx provide a nectar source for the production of honey in arid ecosystems. To identify inter-simple sequence repeat (ISSR) markers that are associated with early flowering and flower abundance in the southern Atacama Desert, we used a sample of 47 trees, representing five Australian provenances of E. cladocalyx. A unified mixed linear model (which considered the effect of genetic structure and the kinship relationship among trees) revealed that three loci were significantly associated with early flowering, which accounted for 10–16 % of the phenotypic variation, while two loci accounted for 11–13 % in flowering intensity. Locus ISO1–500 bp was associated with both flowering traits. This result is consistent with our previous findings indicating that marker-assisted selection on early flowering should have significant and positive impact on flowering intensity. The application of marker-assisted selection to identify trees that flower early and intensively may increase honey production, a resource that generates additional income for the local farmers of the southern Atacama Desert.

Keywords

Eucalyptus cladocalyx / ISSR / Flowering traits / Marker-assisted selection

Cite this article

Download citation ▾
Rodrigo Contreras-Soto, Paulina Ballesta, Eduardo Ruiz, Freddy Mora. Identification of ISSR markers linked to flowering traits in a representative sample of Eucalyptus cladocalyx. Journal of Forestry Research, 2015, 27(2): 239-245 DOI:10.1007/s11676-015-0149-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Albani MC, Battey NH, Wilkinson MJ. The development of ISSR-derived SCAR markers around the seasonal flowering locus (SFL) in Fragaria vesca. Theor Appl Genet, 2004, 109: 571-579.

[2]

Balasaravanan T, Chezhian P, Kamalakannan R, Yasodha R, Varguese M, Gurumurthi K, Ghosh M. Identification of species-diagnostic ISSR markers for six eucalyptus species. Silvae Genet, 2006, 55: 119-122.

[3]

Ballesta P, Mora F, Ruiz E, Contreras-Soto R. Marker-trait associations for survival, growth, and flowering components in Eucalyptus cladocalyx under arid conditions. Biol Plantarum, 2015, 59(2): 389-392.

[4]

Bernardo R, Romero-Severson J, Ziegle J, Hauser J, Joe L, Hookstra G, Doerge RW. Parental contribution and coefficient of coancestry among maize inbreds: pedigree, RFLP, and SSR data. Theor Appl Genet, 2000, 100(3–4): 552-556.

[5]

Bornet B, Branchard M. Non-anchored inter-simple sequence repeat (ISSR) markers: reproducible and specific tools for genome fingerprinting. Plant Mol Biol Rep, 2001, 19: 209-215.

[6]

Brawner JT, Dillon SK, Lee DJ, Meder AR, Dieters MJ, Southerton SG. The use of genetic correlations to evaluate associations between SNP markers and quantitative traits. Tree Genet Genomes, 2012, 8: 1423-1435.

[7]

Brondani RPV, Williams ER, Brondani C, Grattapaglia D. A microsatellite-based consensus linkage map for species of Eucalyptus and a novel set of 230 microsatellite markers for the genus. BMC Plant Biol, 2006, 6 20

[8]

Bush D, Thumma B. Characterizing a Eucalyptus cladocalyx breeding population using SNP markers. Tree Genet Genomes, 2013, 9: 741-752.

[9]

Bush D, McCarthy K, Meder R. Genetic variation of natural durability traits in Eucalyptus cladocalyx (sugar gum). Ann For Sci, 2011, 68: 1057-1066.

[10]

Cané-Retamales C, Mora F, Vargas-Reeve F, Perret S, Contreras-Soto R. Bayesian threshold analysis of breeding values, genetic correlation and heritability of flowering intensity in Eucalyptus cladocalyx under arid conditions. Euphytica, 2011, 178: 177-183.

[11]

Cappa EP, El-Kassaby YA, Garcia MN, Acuña C, Borralho NM, Grattapaglia D, Marcucci Poltri SN. Impacts of population structure and analytical models in genome-wide association studies of complex traits in forest trees: a case study in Eucalyptus globulus. PLoS One, 2013, 8 11 e81267

[12]

Cekic C, Battey NH, Wilkinson MJ. The potential of ISSR-PCR primer-pair combinations for genetic linkage analysis using the seasonal flowering locus in Fragaria as a model. Theor Appl Genet, 2001, 103: 540-546.

[13]

Chambers PGS, Potts BM, Tilyard PA. The genetic control of flowering precocity in Eucalyptus globulus ssp. globulus. Silvae Genet, 1997, 46: 207-214.

[14]

Chezhian P, Yasodha R, Ghosh M. Genetic diversity analysis in a seed orchard of Eucalyptus tereticornis. New For, 2010, 40: 85-99.

[15]

Contreras-Soto R, Mora F, Perret S, Vargas-Reeve F, Cané-Retamales C. Predicción bayesiana del comportamiento poblacional de Eucalyptus cladocalyx para características binarias de componentes de florecimiento y supervivencia en las zonas áridas de chile. Interciencia, 2011, 36: 644-649.

[16]

Doyle JJ, Doyle JL. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Photoch Bull, 1987, 19: 11-15.

[17]

El-Lithy ME, Bentsink L, Hanhart CJ, Ruys GJ, Rovito D, Broekhof JLM, van der Poel HJA, van Eijk MJT, Vreugdenhil D, Koornneef M. New arabidopsis recombinant inbred line populations genotyped using SNP wave and their use for mapping flowering-time quantitative trait loci. Genetics, 2006, 72: 1867-1876.

[18]

Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol, 2005, 14: 2611-2620.

[19]

Excoffier L, Lischer HEL. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Res, 2010, 10: 564-567.

[20]

Falush D, Stephens M, Pritchard JK. Inference of population structure using multilocus genotype data: dominant markers and null allele. Mol Ecol Notes, 2007, 7: 574-578.

[21]

Farro AP, Bortoloto TM, Oda S, Mello E, Marino CL. Identification of molecular marker linked to early flowering in Eucalyptus grandis. Rev Ins Fla, 2013, 24: 149-157.

[22]

Gaut BS, Long AD. The lowdown on linkage disequilibrium. Plan Cell, 2003, 15: 1502-1506.

[23]

Grillo MA, Li C, Hammond M, Wang L, Schemske DW. Genetic architecture of flowering time differentiation between locally adapted populations of Arabidopsis thaliana. New Phytol, 2013, 197: 1321-1331.

[24]

Hendry AP, Day T. Population structure attributable to reproductive time: isolation by time and adaptation by time. Mol Ecol, 2005, 14: 901-916.

[25]

Izawa T, Takahashi Y, Yano M. Comparative biology comes into bloom: genomic and genetic comparison of flowering pathways in rice and Arabidopsis. Curr Opin Plant Biol, 2003, 6: 113-120.

[26]

Jaya ESKD, Clemens J, Song J, Zhang H, Jameson PE. Quantitative expression analysis of meristem identity genes in Eucalyptus occidentalis: AP1 is an expression marker for flowering. Tree Physiol, 2010, 30: 304-312.

[27]

Keatley MR, Hudson IL. A comparison of long-term flowering patterns of box-Ironbark species in Havelock and Rushworth forests. J Environ Modell Assess, 2007, 12: 279-292.

[28]

Külheim C, Yeoh SH, Wallis RR, Laffan S, Moran GF, Foley WJ. The molecular basis of quantitative variation in foliar secondary metabolites in Eucalyptus globulus. New Phytol, 2011, 191: 1041-1053.

[29]

Lepoittevin C, Harvengt L, Plomion C, Garnier-Géré P. Association mapping for growth, straightness and wood chemistry traits in the Pinus pinaster Aquitaine breeding population. Tree Genet Genomes, 2012, 8: 113-126.

[30]

McDonald MW, Rawlings M, Butcher PA, Bell JC. Regional divergence and inbreeding in Eucalyptus cladocalyx (Myrtaceae). Aust J Bot, 2003, 51: 393-403.

[31]

McKay JK, Richards JH, Mitchell-Olds T. Genetics of drought adaptation in Arabidopsis thaliana. I. Pleiotropy contributes to genetic correlations among ecological traits. Mol Ecol, 2003, 12: 1137-1151.

[32]

Méndez-Vigo B, Martínez-Zapater JM, Alonso-Blanco C. The flowering repressor SVP underlies a novel Arabidopsis thaliana QTL interacting with the genetic background. PLoS Genet, 2013, 9 1

[33]

Missiaggia AA, Piacezzi AL, Grattapaglia D. Genetic mapping of Eef1, a major effect QTL for early flowering in Eucalyptus grandis. Tree Genet Genomes, 2005, 1: 79-84.

[34]

Montenegro G, Pizarro R, Avila G, Castro R, Ríos C, Muñoz O, Bas F, Gómez M. Origen botánico y propiedades químicas de las mieles de la región mediterránea árida de Chile. Cien Inves Agraria, 2003, 30: 161-174.

[35]

Mora F, Castillo D, Lado B, Matus I, Poland J, Belzile F, Von Zitzewitz J, Del Pozo A. Genome-wide association mapping of agronomic traits and carbon isotope discrimination in a worldwide germplasm collection of spring wheat using SNP markers. Mol Breed, 2015, 35 69

[36]

Mora F, Serra N. Bayesian estimation of genetic parameters for growth, stem straightness, and survival in Eucalyptus globulus on an Andean Foothill site. Tree Genet Genomes, 2014, 10: 711-719.

[37]

Mora F, Gleadow R, Perret S, Scapim CA. Genetic variation for early flowering, survival and growth in sugar gum (Eucalyptus cladocalyx F. Muell) in southern Atacama Desert. Euphytica, 2009, 169: 335-344.

[38]

Munguía-Rosas MA, Ollerton J, Parra-Tabla V, De-Nova JA. Meta-analysis of phenotypic selection on flowering phenology suggests that early-flowering plants are favoured. Ecol Lett, 2011, 14: 511-521.

[39]

Neale DB, Savolainen O. Association genetics of complex traits in conifers. Trends Plant Sci, 2004, 9: 325-330.

[40]

Neath AA, Cavanaugh JE. The Bayesian information criterion: background, derivation, and applications. Comp Stat, 2012, 4: 199-203.

[41]

Nordborg M. Linkage disequilibrium, gene trees and selfing: an ancestral recombination graph with partial self-fertilization. Genetics, 2000, 154: 923-929.

[42]

Okun DO, Kenya EU, Oballa PO, Odee DW, Muluvi GM. Analysis of genetic diversity in Eucalyptus grandis (Hill ex Maiden) seed sources using inter simple sequence repeats (ISSR) molecular markers. Afr J Biotechnol, 2008, 7: 2119-2123.

[43]

Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics, 2000, 155: 945-959.

[44]

Reynolds J, Weir BS, Cockerham CC. Estimation for the coancestry coefficient: basis for a short-term genetic distance. Genetics, 1983, 105: 767-779.

[45]

Rogiers SY, Smith JP, Holzapfel BP, Nielsen GL. Shifts in biomass and nitrogen allocation of tree seedlings in response to root-zone temperature. Aust J Bot, 2014, 62: 205-216.

[46]

SAS (2007) Version 9.1.3; SAS Institute Inc.: Cary

[47]

Stich B, Melchinger AE. Comparison of mixed-model approaches for association mapping in rapeseed, potato, sugar beet, maize, and arabidopsis. BMC Genom, 2009, 10: 1-14.

[48]

Thamarus K, Groom K, Murrell J, Byrne M, Moran G. A genetic linkage map for Eucalyptus globulus with candidate loci for wood, fiber, and floral traits. Theor Appl Genet, 2002, 104: 379-387.

[49]

Thornsberry JM, Goodman MM, Doebley J, Kresovich S, Nielsen S, Buckler ES. Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet, 2001, 28: 286-289.

[50]

Thumma BR, Matheson BA, Zhang D, Meeske C, Meder R, Downes GM, Southerton SG. Identification of a cis-acting regulatory polymorphism in a eucalypt COBRA-like gene affecting cellulose content. Genetics, 2009, 183: 1153-1164.

[51]

Van-Tassell CP, Van-Vleck LD. Multiple-trait Gibbs sampler for animal models: flexible programs for Bayesian and likelihood-based (co)variance component inference. J Anim Sci, 1996, 74: 2586-2597.

[52]

Vargas-Reeve F, Mora F, Perret S, Scapim CA. Heritability of stem straightness and genetic correlations in Eucalyptus cladocalyx in the semi-arid region of Chile. Crop Breed Appl Biotechnol, 2013, 13: 107-112.

[53]

Woodrow IE, Slocum D, Gleadow RM. Influence of water stress on cyanogenic capacity in Eucalyptus cladocalyx. Aust J Plant Physiol, 2002, 29: 103-110.

[54]

Yu J, Pressoir G, Briggs WH, Bi IV, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, Nielsen DM, Holland JB, Kresovich S, Buckler ES. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet, 2006, 38: 203-208.

[55]

Zapata-Valenzuela J, Isik F, Maltecca C, Wegrzyn J, Neale D, McKeand S, Whetten R. SNP markers trace familial linkages in a cloned population of Pinus taeda—prospects for genomic selection. Tree Genet Genomes, 2012, 8: 1307-1318.

[56]

Zhao K, Aranzana MJ, Kim S, Lister C, Shindo C, Tang C, Toomajian C, Zheng H, Dean C, Marjoram Z, Nordborg M. An Arabidopsis example of association mapping in structured samples. PLoS Genet, 2007, 3 e4

AI Summary AI Mindmap
PDF

136

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/