Forest aboveground biomass estimates in a tropical rainforest in Madagascar: new insights from the use of wood specific gravity data

Tahiana Ramananantoandro , Herimanitra P. Rafidimanantsoa , Miora F. Ramanakoto

Journal of Forestry Research ›› 2015, Vol. 26 ›› Issue (1) : 47 -55.

PDF
Journal of Forestry Research ›› 2015, Vol. 26 ›› Issue (1) : 47 -55. DOI: 10.1007/s11676-015-0029-9
Original Paper

Forest aboveground biomass estimates in a tropical rainforest in Madagascar: new insights from the use of wood specific gravity data

Author information +
History +
PDF

Abstract

To generate carbon credits under the Reducing Emissions from Deforestation and forest Degradation program (REDD+), accurate estimates of forest carbon stocks are needed. Carbon accounting efforts have focused on carbon stocks in aboveground biomass (AGB). Although wood specific gravity (WSG) is known to be an important variable in AGB estimates, there is currently a lack of data on WSG for Malagasy tree species. This study aimed to determine whether estimates of carbon stocks calculated from literature-based WSG values differed from those based on WSG values measured on wood core samples. Carbon stocks in forest biomass were assessed using two WSG data sets: (i) values measured from 303 wood core samples extracted in the study area, (ii) values derived from international databases. Results suggested that there is difference between the field and literature-based WSG at the 0.05 level. The latter data set was on average 16 % higher than the former. However, carbon stocks calculated from the two data sets did not differ significantly at the 0.05 level. Such findings could be attributed to the form of the allometric equation used which gives more weight to tree diameter and tree height than to WSG. The choice of dataset should depend on the level of accuracy (Tier II or III) desired by REDD+. As higher levels of accuracy are rewarded by higher prices, species-specific WSG data would be highly desirable.

Keywords

Biomass estimates / Carbon stocks / Data quality / Madagascar / REDD+ / Wood specific gravity

Cite this article

Download citation ▾
Tahiana Ramananantoandro, Herimanitra P. Rafidimanantsoa, Miora F. Ramanakoto. Forest aboveground biomass estimates in a tropical rainforest in Madagascar: new insights from the use of wood specific gravity data. Journal of Forestry Research, 2015, 26(1): 47-55 DOI:10.1007/s11676-015-0029-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Baillères H, Vitrac O, Ramananantoandro T. Assessment of continuous distribution of wood properties from a low number of samples: application to the variability of modulus of elasticity between trees and within a tree. Holzforschung, 2005, 59: 524-530.

[2]

Blanc L, Echard M, Herault B, Bonal D, Marcon E, Chave J, Baraloto C. Dynamics of aboveground carbon stocks in a selectively logged tropical forest. Ecol Appl, 2009, 19: 1397-1404.

[3]

Bryan J, Shearman PL, Ash J, Kirkpatrick JB (2010) Estimating rainforest biomass stocks and carbon loss from deforestation and degradation in Papua New Guinea 1972–2002: best estimates, uncertainties and research needs. J Environ Manag 91:995–1001

[4]

Brown S. Estimating biomass and biomass change of tropical forests: a primer. 1997, Rome: Food and Agriculture Organisation, 1 55

[5]

Brown S, Gillespie AJR, Lugo AE. Biomass estimation methods for tropical forests with applications to forest inventory data. For Sci, 1989, 35: 881-902.

[6]

Canadell JG, Raupach M. Managing forests for climate change mitigation. Science, 2008, 320: 1456-1457.

[7]

Chave J, Condit R, Aguilar S, Hernandez A, Lao S, Perez R. Error propagation and scaling for tropical forest biomass estimates. Philos Trans R Soc B, 2004, 359: 409-420.

[8]

Chave H, Andalo C, Brown S, Cairns MA, Chambers JQ, Eamus D, Fölster H, Fromard F, Higuchi N, Kira T, Lescure JP, Nelson BW, Ogawa H, Puig H, Riéra B, Yamakura T. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia, 2005, 145: 87-99.

[9]

Chave J, Condit R, Muller-Landau HC, Thomas SC, Ashton PS, Bunyavejchewin S, Co LL, Dattaraja HS, Davies SJ, Esufali S, Ewango CEN, Feeley KJ, Foster RB, Gunatilleke N, Gunatilleke S, Hall P, Hart TB, Hernandez C, Hubbell S.P, Itoh A, Kiratiprayoon S, LaFrankie JV, Loo de Lao S, Makana J, Noor MNS, Kassim AR, Samper C, Sukumar R, Suresh HS, Tan S, Thompson J, Tongco MDC, Valencia R, Vallejo M, Villa G, Yamakura T, Zimmermann JK, Losos EC (2008) Assessing evidence for a pervasive alteration in tropical tree communities. PLoS Biol 6 (3): e45 http://www.plosbiology.org/article/fetchObject.action?uri=info%3Adoi%2F10.1371%2Fjournal.pbio.0060045&representation=PDF. Accessed April 2013

[10]

Chave J, Coomes D, Jansen S, Lewis SL, Swenson NG, Zanne AE. Towards a worldwide wood economics spectrum. Ecol Lett, 2009, 12: 351-366.

[11]

Ebeling J, Yasue M. Generating carbon finance through avoided deforestation and its potential to create climatic, conservation and human development benefits. Philos Trans R Soc B, 2008, 363: 1917-1924.

[12]

Feldpausch TR, Lloyd J, Lewis SL, Brienen RJW, Gloor M, Monteagudo Mendoza A, Lopez-Gonzalez G, Banin L, Salim KA, Affum-Baffoe K, Alexiades M, Almeida S, Amaral I, Andrade A, Aragão LEOC, Araujo Murakami A, Arets EJMM, Arroyo L, Aymard GA, Baker TR, Banki OS, Berry NJ, Cardozo N, Chave J, Comiskey JA, Alvarez E, de Oliveira A, Di Fiore A, Djagbletey G, Domingues TF, Erwin TL, Fearnside PM, França MB, Freitas MA, Higuchi N, Honorio E, Iida Y, Jiménez E, Kassim AR, Killeen TJ, Laurance WF, Lovett JC, Malhi Y, Marimon BS, Marimon-Junior BH, Lenza E, Marshall AR, Mendoza C, Metcalfe DJ, Mitchard ETA, Neill DA, Nelson BW, Nilus R, Nogueira EM, Parada A, Peh KSH, Pena Cruz A, Peñuela MC, Pitman NCA, Prieto A, Quesada CA, Ramirez F, Ramirez-Angulo H, Reitsma JM, Rudas A, Saiz G, Salomão RP, Schwarz M, Silva N, Silva-Espejo JE, Silveira M, Sonké B, Stropp J, Taedoumg HE, Tan S, ter Steege H, Terborgh J, Torello-Raventos M, van der Heidjen GMF, Vasquez R, Vilanova E, Vos VA, White L, Willcock S, Woell H, Phillips OL. Tree height integrated into pantropical forest biomass estimates. Biogeosciences, 2012, 9: 3381-3403.

[13]

Gibbs HK, Brown S, Niles JO, Foley AJ. Monitoring and estimating tropical forest carbon stocks: making REDD a reality. Environ Res Lett, 2007, 2: 1-13.

[14]

Henry M, Besnard A, Asante WA, Eshun J, Adu-Bredu S, Valentini R, Bernoux M, Saint-André L. Wood density, phytomass variations within and among trees, and allometric equations in a tropical rainforest of Africa. For Ecol Manage, 2010, 260: 1375-1388.

[15]

Herold M, Skutsch M. Monitoring, reporting and verification for national REDD+ programmes: two proposals. Environ Res Lett, 2011, 6: 1-10.

[16]

Kindermann G, Obersteiner M, Sohngen B, Sathaye J, Andrasko K, Rametsteiner E, Schlamadinger B, Wunder S, Beach R. Global cost estimates of reducing carbon emissions through avoided deforestation. Proc Natl Acad Sci, 2008, 105: 10302-10307.

[17]

Luyssaert S, Schulze ED, Börner A, Knohl A, Hessenmöller D, Law BE, Ciais P, Grace J. Old-growth forests as global carbon sinks. Nature, 2008, 455: 213-215.

[18]

Marshall AR, Willcock S, Platts PJ, Lovett JC, Balmford A, Burgess ND, Latham JE, Munishi PKT, Salter R, Shirima DD, Lewis SL. Measuring and modelling above-ground carbon and tree allometry along a tropical elevation gradient. Biol Conserv, 2012, 154: 20-33.

[19]

MEF-Ministère de l’Environnement et de Forêts (2009) Quatrième rapport national de la convention sur la diversité biologique. MEF/UNEP, Madagascar, pp 1–120

[20]

Moutinho P, Schwartzman S (2005) Tropical deforestation and climate change. Pará : Instituto de Pesquisa Ambiental da Amazônia Belém, Environmental Defense, Washington DC, p 1–131

[21]

Muller-Landau HC. Interspecific and inter-site variation in wood specific gravity of tropical trees. Biotropica, 2004, 36: 20-32.

[22]

Nogueira EM, Nelson BW, Fearnside PM. Wood density in dense forest in central Amazonia, Brazil. For Ecol Manage, 2005, 208: 261-286.

[23]

Peters-Stanley M, Hamilton K. Developing dimension: state of the voluntary carbon markets 2012. Washington DC. Ecosystem Marketplace. 2012, New York: Bloomberg New Energy Finance, 17 26

[24]

Plugge D, Thomas B, Kohl M. Blanco J, Kheradmand H. Reduced Emissions from Deforestation and Forest Degradation (REDD): why a robust and transparent monitoring, reporting and verification (MRV) System is mandatory?. Climate change—research and technology for adaptation and mitigation Croatia. 2011, Europe: In Tech, 1 488

[25]

R Development Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/. Accessed April 2013

[26]

Rajaonera ML. Mise en place d’un état de référence et d’un plan de suivi écologique permanent des vestiges de forêt primaire de la station forestière de Mandraka. 2008, Antananarivo: Ecole Supérieure des Sciences Agronomiques, 1 84

[27]

Rakotovao G, Rabevohitra AR, Collas de Chaptelperron P, Guibal D, Gérard J. Atlas des bois de Madagascar. 2012, France: Edition Quae, 1 13

[28]

Reyes G, Brown S, Chapman J, Lugo AE. Wood densities of tropical tree species. 1992, Louisiana: United States Department of Agriculture, 1 15

[29]

Saatchi SS, Harris NL, Brown S, Lefsky M, Mitchard ETA, Salas W, Zutta BR, Buermann W, Lewis SL, Hagen S, Petrova S, White L, Silman M, Morel A. Benchmark map of forest carbon stocks in tropical regions across three continents. Proc Natl Acad Sci, 2011, 108: 9899-9905.

[30]

Scaranello MA, Alves LF, Vieira SA, de Camargo PB, Joly CA, Martinelli LA. Height-diameter relationships of tropical Atlantic moist forest trees in southeastern Brazil. Scientia Agricola, 2012, 69(1): 26-37.

[31]

Schatz GE. Lourenço WR, Goodman SM. Endemism in the Malagasy tree flora. Diversity and endemism in Madagascar. 2000, Paris: Mémoires de la Société de Biogéographie, 1 9

[32]

Slik JWF. Estimating species-specific wood density from the genus average in Indonesian trees. J Trop Ecol, 2006, 22: 481-482.

[33]

van der Werf GR, Morton DC, DeFries RS, Olivier JGJ, Kasibhatla PS, Jackson RB, Collatz GJ, Randerson JT. CO2 emissions from forest loss. Nat Geosci, 2009, 2: 737-738.

[34]

Vieilledent G, Vaudry R, Andriamanohisoa SFD, Rakotonarivo OS, Randrianasolo HZ, Razafindrabe HN, Bidaud Rakotoarivony C, Ebeling J, Rasamoelina M. A universal approach to estimate biomass and carbon stock in tropical forests using generic allometric models. Ecol Appl, 2012, 22(2): 572-583.

[35]

Wiemann MC, Williamson GB. Radial gradients in the specific gravity of wood in some tropical and temperate trees. For Sci, 1989, 35: 197-210.

[36]

Wiemann MC, Williamson GB. Wood specific gravity gradients in tropical dry and montane rain forest trees. Am J Bot, 1989, 76: 924-928.

[37]

Williamson GB, Wiemann MC. Age-dependent radial increases in wood specific gravity of tropical pioneers in Costa Rica. Biotropica, 2010, 42(5): 590-597.

[38]

Williamson GB, Wiemann MC. Measuring wood specific gravity correctly. Am J Bot, 2010, 97(3): 519-524.

[39]

Woodcock DW, Shier AD. Does canopy position affect wood specific gravity in temperate forest trees?. Ann Bot, 2003, 91: 529-537.

[40]

Zanne AE, Lopez-Gonzalez G, Coomes DA, Ilic J, Jansen S, Lewis SL, Miller RB, Swenson NG, Wiemann MC, Chave J. Data from: towards a worldwide wood economics spectrum. Dryad Digit Repos, 2009

[41]

Ziter C, Bennett EM, Gonzalez A. Functional diversity and management mediate aboveground carbon stocks in small forest fragments. Ecosphere, 2013, 4 7 85

AI Summary AI Mindmap
PDF

113

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/