Effects of thinning on stand structure and tree stability in an afforested oriental beech (Fagus orientalis Lipsky) stand in northeast Turkey

Zafer Yücesan , Sevilay Özçelik , Ercan Oktan

Journal of Forestry Research ›› 2015, Vol. 26 ›› Issue (1) : 123 -129.

PDF
Journal of Forestry Research ›› 2015, Vol. 26 ›› Issue (1) : 123 -129. DOI: 10.1007/s11676-015-0028-x
Original Paper

Effects of thinning on stand structure and tree stability in an afforested oriental beech (Fagus orientalis Lipsky) stand in northeast Turkey

Author information +
History +
PDF

Abstract

We studied relationships between stand structure and stand stability according to thinning intensity in an afforested oriental beech stand. Various thinning intensities were applied in sample stands. We sampled eight plots in stands that were lightly thinned, eight plots in heavily thinned stands and eight plots in unthinned stands as a control. Height and diameter distributions of the stands were measured to assess stand structure. We quantified individual tree stability and collective stability. Heavy thinning during the first thinning operation damaged the storied structure of the stand in thicket stage and affected collective structuring ability. While most control plots had multi-storied stands, after light and heavy thinning two-storied structure became more common. Large gaps occurred in the canopy after heavy thinning. On average, nine tree collectives were formed per sampling plot in the untreated stand, seven collectives after thinning in 2008 and four collectives after thinning in 2009. Stable trees accounted for 17 % of trees in control plots, 24 % in lightly thinned plots, and 15 % in heavily thinned plots. Collective stability values were 83 % in control plots, 82 % in lightly thinned plots and 36 % in heavily thinned plots. We conclude that it is necessary to retain collective structuring capacity during thinning operations for sustaining stand stability.

Keywords

Oriental beech / Thinning / Stand structure / Tree stability

Cite this article

Download citation ▾
Zafer Yücesan, Sevilay Özçelik, Ercan Oktan. Effects of thinning on stand structure and tree stability in an afforested oriental beech (Fagus orientalis Lipsky) stand in northeast Turkey. Journal of Forestry Research, 2015, 26(1): 123-129 DOI:10.1007/s11676-015-0028-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Atay I. Forest tending. 1989, Istanbul: Istanbul University Press, 106.

[2]

Avşar MD. Meşcerede tabakalılık şekilleri ve belirlenmesi. KSÜ Fen Mühendis Derg, 2004, 7(2): 48-53.

[3]

Bachofen H, Zingg A. Effectiveness of structure improvement thinning on stand structure in subalpine Norway spruce (Picea abies (L.) Karst.) stands. For Ecol Manag, 2001, 145: 137-149.

[4]

Becquey J, Riou-Nivert P. L’existence de zones de stabilite des peuplements, Consequences sur la gestion. Rev Forstiere Fr, 1987, 39: 323-334.

[5]

Breda N, Granier A, Aussenac G. Effects of thinning on soil and tree water relations, transpiration and growth in an oak forest (Quercus petraea (Matt.) Liebl.). Tree Physiol, 1994, 15: 295-306.

[6]

Cremer KW, Borough CJ, McKinnell FH, Carter PR. Effects of stocking and thinning on wind damage in plantations. NZ J For Sci, 1982, 12: 244-268.

[7]

Gassebner H (1986) Integrale Schutzwaldinventur in Neustift im Stubaital. Dissertationen der Universität für Bodenkultur, VWGÖ, Wien, p. 173

[8]

Genç M, Kasarcı E, Kaya C. A silvicultural evaluation on the researches of stand structure. Artvin Çoruh Univ J For Fac, 2012, 13(2): 291-303.

[9]

Hinze WHF, Wessels MO. Stand stability in pines: an important silvicultural criterion for the evaluation of thinning and the development of thinning regimes: management paper. S Afr For J, 2002, 196: 37-40.

[10]

Karagül R. Investigations on soil erodibility and some properties of the soils under different land use types in Sögütlüdere Creek watershed near Trabzon. Turk J Agric For, 1999, 23: 53-68.

[11]

Kleine M (1983) Waldbauliche Untersuchungen im Karbonat-Lärchen-Zirbenwald Warscheneck/Totes Gebirge mit Verkarstungsgefahr. Ph.D. Dissertation, Universität für Bodenkultur, Wien VWGÖ, p. 150

[12]

Konôpka J. Ohrozenie lesných porastov mechanicky pôsobiacimi abiotickými činiteľmi. Lesn Čas, 1999, 45: 51-72.

[13]

Konopka J, Petras R, Toma R. Stihlostny koeficient hlavnych drevin a jeho vyznam pri statickej stabilite porastov (Coefficient of slenderness in the main forest species and its importance for the static stability of forest stands). Lesnictví, 1987, 33(10): 887-904.

[14]

Kramer H. Waldwachstumslehre: Ökologische und anthropogene Einflüsse auf das Wachstum des Waldes, seine Massen- und Wertleistung und die Bestandessicherheit. 1988, Hamburg: Verlag Paul Parey, 374.

[15]

Langenegger H. Eine Checkliste für Waldstabilität im Gebirgswald. Schweiz Z Forstwes, 1979, 130: 640-646.

[16]

Lekes V, Dandul I. Using airflow modelling and spatial analysis for defining wind damage risk classification (WINDARC). For Ecol Manag, 2000, 135(1–3): 331-344.

[17]

Lohmander P, Helles F. Wind throw probability as a function of stand characteristics and shelter. Scand J For Res, 1987, 2: 227-238.

[18]

Mayer H, Ott E. Gebirgswaldbau Schutzwaldpflege: Ein waldbaulicher Beitrag zur Landschaftsökologie und zum Umweltschutz (Mountain silviculture of protection forests: a silvicultural contribution to landscape ecology and environmental protection). 1991, Stuttgart: Gustav Fischer, 587.

[19]

Merkel O. Schneebruch im Fichtenbestand bei 40-jähriger Auslesedurcforstung. Allg Forstz, 1975, 30(33–34): 663-665.

[20]

Mildner H. Die Widerstandsfaehigkeit von Fichtenjungbestaenden gegenueber atmosphaerischen Einwirkugen. Soz Forstwirtsch, 1967, 17: 57-59.

[21]

Milne R. Coutts MP, Grace J. Modelling mechanical stresses in living Sitka spruce stems. Wind and trees. 1995, Cambridge: Cambridge University Press, 165 181

[22]

Mitchel SJ. Wind as a natural disturbance agent in forests: a synthesis. Forestry, 2013, 86: 147-157.

[23]

Oliveira AM (1988) The H/D ratio in maritime pine (Pinus pinaster) stands. In: Ek AR, Shifley SR, Burk TE (eds) Proceedings of the IUFRO conference forest growth modelling and prediction, IUFRO, Vienna, pp 881–888

[24]

Örlander G, Karlsson C. Influence of shelterwood density on survival and height increment of Picea abies advance growth. Scand J For Res, 2000, 15: 20-29.

[25]

Özçelik R. Effects of stand tending on the growth and sample of Pinus brutia Ten. Süleyman Demirel Univ J For Fac, 2000, 1: 41-56.

[26]

Primicia I, Camarero JJ, Imbert JB, Castillo FJ. Effects of thinning and canopy type on growth dynamics of Pinus sylvestris: inter-annual variations and intra-annual interactions with microclimate. Eur J For Res, 2013, 132: 121-135.

[27]

Saatçioğlu F. Forest tending. 1971, Istanbul: Istanbul University Press No: 1636/160, 118.

[28]

Schönenberger W. Cluster afforestation for creating diverse mountain forest structures—a review. For Ecol Manag, 2001, 145: 121-128.

[29]

Slodicak M, Novak J. Silvicultural measures to increase the mechanical stability of pure secondary Norway spruce stands before conversion. For Ecol Manag, 2006, 224: 252-257.

[30]

Somerville A. Wind stability: forest layout and silviculture. NZ J For Sci, 1980, 10: 476-501.

[31]

Staupendahl K. Tree Draw für Windows(Version 2.1): Ein Programm zur Erzeugung von Kronenkarten und dreidimensionalen Bestandesbildern. 2000, Göttingen: Programmdokumentation, 18.

[32]

Tabari M, Fayaz P, Espahbodi K, Staelens J, Nachtergale L. Response of oriental beech (Fagus orientalis Lipsky) seedlings to canopy gap size. Forestry, 2005, 78(4): 443-450.

[33]

Thornthwaite CW. An approach toward a rational classification of climate. Geogr Rev, 1948, 38(1): 55-94.

[34]

Üçler AÖ, Demirci A, Yavuz H, Yücesan Z, Oktan E, Gül AU (2001) Determination of stand structure and functional examination of pure oriental spruce (Picea orientalis (L.) Link) stands near alpine zone. The Scientific and Technological Research Council of Turkey, Project No: TARP-2215, Trabzon, pp 138

[35]

Vaartaja O. On the recovery of released pine advance growth and its silviculture importance. Acta For Fenn, 1951, 59(3): 1-133.

[36]

Valinger E, Fridman J. Modelling probability of snow and wind damage in Scots pine stands using tree characteristics. For Ecol Manag, 1997, 97: 215-222.

[37]

Varmola M, Kolström T, Mehtätalo E. The effect of thinning on the growth and external quality of the dominant trees in a Pinus sylvestris stand established by spot sowing. Scand J For Res, 1998, 13: 151-159.

[38]

Vicena I, Parez J, Konopka J. Ochrana lesa proti polomum (Forest protection against the snow and windbreaks in Czech). 1979, Praha: SZN, 244.

[39]

Wang Y (1988) Crown structure, radiation absorption, photosynthesis and transpiration. Ph.D. Dissertation, University of Edinburgh, Edinburgh, p 188

[40]

Wang Y, Titus SJ, LeMay VM. Relationships between tree slenderness coefficients and tree or stand characteristics for major species in boreal mixed wood forests. Can J For Res, 1998, 28: 1171-1183.

[41]

West PW. Growing plantation forests. 2006, Berlin: Springer, 304.

[42]

Wilson JS (1988) Wind stability of naturally regenerated and planted Douglas-fir stands in coastal Washington, Oregon and British Columbia. Ph.D. Dissertation, University of Washington, Washington, p 160

[43]

Wilson JS, Oliver CD. Stability and density management in Douglas-fir plantations. Can J For Res, 2000, 30: 910-920.

[44]

Yücesan Z (2006) Analysis of pure and mixed stand dynamics in high mountain forests in Çamlıhemşin-Fırtına valley. Ph.D. Dissertation, Karadeniz Technical University, Trabzon, p 310

AI Summary AI Mindmap
PDF

113

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/