Sequence-related amplified polymorphism primer screening on Chinese fir (Cunninghamia lanceolata (Lamb.) Hook)

Huiquan Zheng , Hongjing Duan , Dehuo Hu , Ruping Wei , Yun Li

Journal of Forestry Research ›› 2015, Vol. 26 ›› Issue (1) : 101 -106.

PDF
Journal of Forestry Research ›› 2015, Vol. 26 ›› Issue (1) : 101 -106. DOI: 10.1007/s11676-015-0025-0
Original Paper

Sequence-related amplified polymorphism primer screening on Chinese fir (Cunninghamia lanceolata (Lamb.) Hook)

Author information +
History +
PDF

Abstract

Chinese fir (Cunninghamia lanceolata (Lamb.) Hook) is one of the most important coniferous tree species used for timber production in China. Here, we conducted a sequence-related amplified polymorphism (SRAP) primer screening assay with a total of 594 primer combinations, using 22 forward and 27 reverse primers on four representative Chinese fir genotypes. The obtained results indicated that Chinese fir genomic DNA has a notable amplification bias on the employed forward or reverse primer nucleotides (3′ selection bases). Out of the tested primer sets, 35 primer combinations with clearly distinguished bands, stable amplification, and rich polymorphism were selected and identified as optimal primer sets. These optimal primer pairs gave a total of 379 scorable bands, including 265 polymorphic bands, with an average of 10.8 bands and 7.6 polymorphic bands per primer combination. The produced band number for each optimal primer set ranged from 7 to 14 with a percentage of polymorphic bands spanning from 33.3 to 100.0 %. These primer combinations could facilitate the next SRAP analysis assays in Chinese fir.

Keywords

Chinese fir / SRAP / Primer / Screening assay / Polymorphism

Cite this article

Download citation ▾
Huiquan Zheng, Hongjing Duan, Dehuo Hu, Ruping Wei, Yun Li. Sequence-related amplified polymorphism primer screening on Chinese fir (Cunninghamia lanceolata (Lamb.) Hook). Journal of Forestry Research, 2015, 26(1): 101-106 DOI:10.1007/s11676-015-0025-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Agarwal M, Shrivastava N, Padh H. Advances in molecular marker techniques and their applications in plant sciences. Plant Cell Rep, 2008, 27(4): 617-631.

[2]

Ahmad R, Potter D, Southwick SM. Genotyping of peach and nectarine cultivars with SSR and SRAP molecular markers. J Am Soc Hortic Sci, 2004, 129(2): 204-210.

[3]

Ai PF, Zhen ZJ, Jin ZZ. Genetic diversity and relationships within sweet kernel apricot and related Armeniaca species based on sequence-related amplified polymorphism markers. Biochem Syst Ecol, 2011, 39(4–6): 694-699.

[4]

Baloch FS, Kurt C, Arioğlu H, Ozkan H. Assaying of diversity among soybean (Glycin max (L.) Merr.) and peanut (Arachis hypogaea L.) genotypes at DNA level. Turk J Agric For, 2010, 34: 285-301.

[5]

Bracci T, Busconi M, Fogher C, Sebastiani L. Molecular studies in olive (Olea europaea L.): overview on DNA markers applications and recent advances in genome analysis. Plant Cell Rep, 2011, 30(4): 449-462.

[6]

Budak H, Shearman RC, Gaussoin RE, Dweikat I. Application of sequence-related amplified polymorphism markers for characterization of turfgrass species. HortScience, 2004, 39: 955-958.

[7]

Castonguay Y, Cloutier J, Bertrand A, Michaud R, Laberge S. SRAP polymorphisms associated with superior freezing tolerance in alfalfa (Medicago sativa spp. sativa). Theor Appl Genet, 2010, 120(8): 1611-1619.

[8]

Chen YQ, Ye BY, Zhu JM, Zhuang ZH, Pan DR, Chen RK. Analysis of genetic relationship among Chinese fir (Cuninghamia lanceolata Hook) provenances by RAPD. Appl Environ Biol, 2001, 7(2): l30-l133. (In Chinese)

[9]

Collard BC, Mackill DJ. Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos Trans R Soc B Biol Sci, 2008, 363(1491): 557-572.

[10]

Feng FJ, Chen MM, Zhang DD, Sui X, Han SJ. Application of SRAP in the genetic diversity of Pinus koraiensis of different provenances. Afr J Biotechnol, 2009, 8(6): 1000-1008.

[11]

Ferriol M, Picó B, Nuez F. Genetic diversity of a germplasm collection of Cucurbita pepo using SRAP and AFLP markers. Theor Appl Genet, 2003, 107(2): 271-282.

[12]

Guo DL, Luo ZR. Genetic relationships of some PCNA persimmons (Diospyros kaki Thunb.) from China and Japan revealed by SRAP analysis. Genet Resour Crop Evol, 2006, 53: 1597-1603.

[13]

Han XY, Wang LS, Shu QY, Liu ZA, Xu SX, Tetsumura T. Molecular characterization of tree peony germplasm using sequence-related amplified polymorphism markers. Biochem Genet, 2008, 46: 162-179.

[14]

He ZX, Shi JS, Yin ZF, Chen XC, Yu RZ. Detection of genetic markers associated with growth traits in Chinese fir. J Zhejiang For Coll, 2000, 17(4): 350-354. (In Chinese)

[15]

Huang HH, Xu LL, Tong ZK, Lin EP, Liu QP, Cheng LJ, Zhu MY. De novo characterization of the Chinese fir (Cunninghamia lanceolata) transcriptome and analysis of candidate genes involved in cellulose and lignin biosynthesis. BMC Genom, 2012, 13 648

[16]

Jing ZB, Wang XP, Cheng JM. Analysis of genetic diversity among Chinese wild Vitis species revealed with SSR and SRAP markers. Genet Mol Res, 2013, 12(2): 1962-1973.

[17]

Li G, Quiros CF. Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor Appl Genet, 2001, 103: 455-461.

[18]

Li M, Shi J, Li F, Gan S. Molecular characterization of elite genotypes with in a second-generation Chinese Fir (Cunninghamia lanceolata) breeding population using RAPD markers. Scientia Silvae Sinicae, 2007, 43(12): 50-55.

[19]

Mishra MK, Nishani S, Jayarama. Genetic relationship among indigenous coffee species from India using RAPD ISSR and SRAP markers. Biharean Biologist, 2011, 5(1): 17-24.

[20]

Müller-Starck G, Liu YQ. Genetics of Cuninghamia lanceolata HOOK. 1 genetic analysis. Silvae Genetica, 1988, 37: 236-243.

[21]

Nei M, Li W. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA, 1979, 79: 5269-5273.

[22]

Ouyang L, Chen JH, Zheng RH, Xu Y, Lin YF, Huang JH, Ye DQ, Fang YH, Shi JS. Genetic diversity among the germplasm collections of the Chinese fir in 1st breeding population upon SSR markers. J Nanjing For Univ (Nat Sci Edn), 2014, 38(1): 21-26. (In Chinese)

[23]

Poczai P, Varga I, Laos M, Cseh A, Bell N, Valkonen JP, Hyvönen J. Advances in plant gene-targeted and functional markers: a review. Plant Methods, 2013, 9 1 6

[24]

Rana MK, Arora K, Singh S, Singh AK. Multi-locus DNA fingerprinting and genetic diversity in jute (Corchorus spp.) based on sequence-related amplified polymorphism. J Plant Biochem Biotechnol, 2013, 22(1): 1-8.

[25]

Shen AH, Li HB, Wang K, Ding HM, Zhang X, Fan L, Jiang B. Sequence characterized amplified region (SCAR) markers-based rapid molecular typing and identification of Cunninghamia lanceolata. Afr J Biotechnol, 2011, 10(82): 19066-19074.

[26]

Shi J, Zhen Y, Zheng RH. Proteome profiling of early seed development in Cunninghamia lanceolata (Lamb.) Hook. J Exp Bot, 2010, 61(9): 2367-2381.

[27]

Smutkupt S, Peyachoknagul S, Kowitwanich K, Onto S, Thanananta N, Julsrigival S, Kunkaew W, Punsupa V. Varietal determination and genetic relationship analysis of highland legumes using SRAP markers. SABRAO J Breed Genet, 2006, 38(1): 19-27.

[28]

Soleimani MH, Talebi M, Sayed-Tabatabaei BE. Use of SRAP markers to assess genetic diversity and population structure of wild, cultivated, and ornamental pomegranates (Punica granatum L.) in different regions of Iran. Plant Syst Evol, 2012, 298: 1141-1149.

[29]

Tong CF, Shi JS. Constructing genetic linkage maps in Chinese fir using F1 progeny. Acta Genetica Sinica, 2004, 31(10): 1149-1156. (In Chinese)

[30]

Uzun A, Yesiloglu T, Aka-Kacar Y, Tuzcu O, Gulsen O. Genetic diversity and relationships within Citrus and related genera based on sequence related amplified polymorphism markers (SRAPs). Sci Hortic, 2009, 121: 306-312.

[31]

Valdez-Ojeda R, Hernandez-Stefanoni JL, Aguilar-Espinosa M, Rivera-Madrid R, Ortiz R, Quiros CF. Assessing morphological and genetic variation in Annatto (Bixa orellana L.) by sequence-related amplified polymorphism and cluster analysis. HortScience, 2008, 43(7): 2013-2017.

[32]

Walter C, Carson SD, Menzies MI, Richardson T, Carson M. Review: application of biotechnology to forestry -molecular biology of conifers. World J Microbiol Biotechnol, 1998, 14(3): 321-330.

[33]

Wang G, Gao Y, Yang L, Shi J. Identification and analysis of differentially expressed genes in differentiating xylem of Chinese fir (Cunninghamia lanceolata) by suppression subtractive hybridization. Genome, 2007, 50(12): 1141-1155.

[34]

Wang G, Gao Y, Wang J, Yang L, Song R, Li X, Shi J. Overexpression of two cambium-abundant Chinese fir (Cunninghamia lanceolata) α-expansin genes ClEXPA1 and ClEXPA2 affect growth and development in transgenic tobacco and increase the amount of cellulose in stem cell walls. Plant Biotechnol J, 2011, 9(4): 486-502.

[35]

Wang Z, Chen J, Liu W, Luo Z, Wang P, Zhang Y, Zheng R, Shi J. Transcriptome characteristics and six alternative expressed genes positively correlated with the phase transition of annual cambial activities in Chinese Fir (Cunninghamia lanceolata (Lamb.) Hook). PLoS One, 2013, 8 8 e71562

[36]

Yang YL, Ma XQ, Zhang MQ. Molecular polymorphic analysis for different geographic provenances of Chinese Fir. J Trop Subtrop Biol, 2009, 17(2): 183-189. (In Chinese)

[37]

Yeh FC, Shi J, Yang R, Hong J, Ye Z. Genetic diversity and multilocus associations in Cunninghamia lanceolata (Lamb.) Hook from The People’s Republic of China. Theor Appl Genet, 1994, 88: 465-471.

[38]

You Y, Hong JS. Application of RAPD marker to genetic variation of Chinese fir provenances. Scientia Silvae Sinicae, 1998, 34(4): 32-38. (In Chinese)

[39]

Youssef M, James AC, Rivera-Madrid R, Ortiz R, Escobedo-GraciaMedrano RM. Musa genetic diversity revealed by SRAP and AFLP. Mol Biotechnol, 2011, 47(3): 189-199.

[40]

Zhao WG, Fang RJ, Pan YL, Yang YH, Chung JW, Chung IM, Park YJ. Analysis of genetic relationships of mulberry (Morus L.) germplasm using sequence-related amplified polymorphism (SRAP) markers. Afr J Biotechnol, 2009, 8(11): 2604-2610.

AI Summary AI Mindmap
PDF

131

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/