Preliminary assessment of growth and survival of green alder (Alnus viridis), a potential biological stabilizer on fly ash disposal sites

Marcin Pietrzykowski , Wojciech Krzaklewski , Bartłomiej Woś

Journal of Forestry Research ›› 2015, Vol. 26 ›› Issue (1) : 131 -136.

PDF
Journal of Forestry Research ›› 2015, Vol. 26 ›› Issue (1) : 131 -136. DOI: 10.1007/s11676-015-0016-1
Original Paper

Preliminary assessment of growth and survival of green alder (Alnus viridis), a potential biological stabilizer on fly ash disposal sites

Author information +
History +
PDF

Abstract

This paper presents preliminary assessment of seedling survival and growth of green alder (Alnus viridis (Chaix) DC. in Lam. & DC.) planted on fly ash disposal sites. This kind of post-industrial site is extremely hard to biologically stabilize without top-soiling. The experiment started with surface preparation using NPK start-up mineral fertilizer at 60–36–36 kg ha−1 followed by initial stabilization through hydro-seeding with biosolids (sewage sludge 4 Mg ha−1 dry mass) and a mixture of grasses (Dactylis glomerata L. and Lolium multiflorum Lam.) (200 kg ha−1). Subsequently, three-years-old green alder seedlings were planted in plots on two substrate variants: the control (directly on combustion waste) and plots with 3 dm3 lignite culm from a nearby mine introduced into the planting pit. Five years of preliminary monitoring show good survival seedling rates and growth parameters (height (h), average increase in height (Δh), number of shoots (Lo) and leaf nitrogen supply in the fly ash disposal habitat. Treatment of the site with a combination of lignite culm in planting pits and preliminary surface preparation by hydro-seeding and mineral fertilization had the most positive effect on green alder seedling parameters. The results indicate that it is possible and beneficial to use green alder for biological stabilization on fly ash disposal sites.

Keywords

Fly ash / Green alder / Seedlings survival / Growth / Biological stabilisation

Cite this article

Download citation ▾
Marcin Pietrzykowski, Wojciech Krzaklewski, Bartłomiej Woś. Preliminary assessment of growth and survival of green alder (Alnus viridis), a potential biological stabilizer on fly ash disposal sites. Journal of Forestry Research, 2015, 26(1): 131-136 DOI:10.1007/s11676-015-0016-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Adriano DC, Page AL, Elseewi AA, Chang AC, Straughan I. Utilization and disposal of fly ash and other coal residues in terrestrial ecosystems: A review. J Environ Qual, 1980, 9(3): 333-344.

[2]

Asokan P, Saxena M, Asolekar SR. Coal combustion residues: environmental implications and recycling potentials. Resour Conserv Recycl, 2005, 43: 239-262.

[3]

Carlson CL, Adriano DC. Growth and elemental content of two tree species growing on abandoned coal fly ash basins. J Environ Qual, 1991, 20(3): 581-587.

[4]

Čermák P. Forest reclamation of dumpsites of coal combustion by-products (CCB). J For Sci, 2008, 54(6): 273-280.

[5]

Chaia EE, Wall GL, Huss-Danell K. Life in soil by the actinorhizal root nodule endophyte Frankia. A review. Symbiosis, 2010, 51: 201-226.

[6]

Chassapis K, Roulia M, Tsirigoti D. Chemistry of metal-humic complexes contained in Megalopolis lignite and potential application in modern organomineral fertilization. Int J Coal Geol, 2009, 78(4): 288-295.

[7]

Cheung KC, Wong JPK, Zhang ZQ, Wong JWJ, Wong MH. Revegetation of lagoon ash using the legume species Acacia auriculiformis and Leucaena leucocephala. Environ Pollut, 2000, 109(1): 75-82.

[8]

Ekblad A, Huss-Danell K. Nitrogen fixation by Alnus incana and nitrogen transfer from A. incana to Pinus sylvestris influenced by macronutrients andectomycorrhiza. New Phytol, 1995, 131: 59-453.

[9]

Ellenberg H. Vegetation Ecology of Central Europe. 1988, Cambridge: Cambridge University Press, 731.

[10]

FAO-UNESCO ISSS-ISRIC (2006) World reference base of soil resources. A framework for international classification, correlation and communication. World Soil Resources Report 103. FAO, Rome, p 128

[11]

Flora of North America, Flora Europea. Available at: http://www.efloras.org/. Accessed 28 Jan 2013

[12]

Giannouli A, Kalaitzidis S, Siavalas G, Chatziapostolou A, Christanis K, Papazisimou S, Papanicolaou C, Foscolos A. Evaluation of Greek low-rank coals as potential raw material for the production of soil amendments and organic fertilizers. Int J Coal Geol, 2009, 77: 383-393.

[13]

Haynes RJ. Reclamation and revegetation of fly ash disposal sites - Challenges and research needs. J Environ Manag, 2009, 90: 43-53.

[14]

Heinsdorf D. Düngung von Forstkulturen auf Lausitzer Kippen. 1999, Eberswalde: Laubag 54 pp

[15]

Junor RS. Control of wind erosion on coal ash. J Soil Conserv Serv N S W, 1978, 34(1): 8-13.

[16]

Krzaklewski W, Pająk M, Pietrzykowski M, Strutyński M (2003) Possible applications of green alder (Alnus viridis (Charix) DC. And In Lam. & DC.) in the reclamation of post-mining sites. Adv Agric Sci Probl Issues, 493(3): 905–912 (In Polish, English summary)

[17]

Krzaklewski W, Pietrzykowski M, Woś B. Survival and growth of alders (Alnus glutinosa (L.) Gaertn. and Alnus incana (L.) Moench) on fly ash technosols at different substrate improvement. Ecol Eng, 2012, 49: 35-40.

[18]

Kuznetsova T, Lukjanova A, Mandre M, Lõhmus K. Aboveground biomass and nutrient accumulation dynamics in young black alder, silver birch and Scots pine plantations on reclaimed oil shale mining areas in Estonia. For Ecol Manag, 2011, 262(2): 56-64.

[19]

Kwiatkowska J, Provenzano MR, Senesi N. Long term effects of a brown coal-based amendment on the properties of soil humic acid. Geoderma, 2008, 148(2): 200-205.

[20]

Li RS, Daniels L. Nitrogen accumulation and form over time in young mine soils. J Environ Qual, 1994, 23: 166-172.

[21]

Ostrowska A, Gawliński S, Szczubiałka Z. Procedures for Soil and Plants Analysis. 1991, Warsaw (in Polish): Institute of Environmental Protection 334 pp

[22]

Pavlović P, Mitrović M, Djurdjević L. An ecophysiological study of plants growing on the fly ash deposits from the “Nikola Tesla-A” thermal power station in Serbia. Environ Manag, 2004, 33(5): 654-663.

[23]

Pietrzykowski M, Krzaklewski W, Gaik G (2010) Assessment of forest growth with plantings dominated by Scots pine (Pinus sylvestris L.) on experimental plots on a fly ash disposal site at the Bełchatów power plant. Scientific Bulletin University of Zielona Góra, Series Environmental Engineering, 137(17): 65–74 (In Polish, English summary, http://www.znuzis.uz.zgora.pl/index.html)

[24]

Pillman A, Jusaitis M. Revegetation of waste fly ash lagoons II. Seedling transplants and plant nutrition. Waste Manag Res, 1997, 15(4): 359-370.

[25]

Soil Atlas of Europe (2005) European Soil Bureau Network European Commission, 2005, p 128, Office for Official Publications of the European Communities, L-2995 Luxembourg

[26]

StatSoft Inc. STATISTICA (data analysis software system). Version, 2009, 9 1.

[27]

Stolecki L (2005) The influence of combustion waste disposal in the final excavation pit ‘Bełchatów’ on the aquatic environment. PhD Thesis, Wrocław University of Technology, Faculty of Geoengineering, Mining and Geology, Wrocław (in Polish)

[28]

Sundstrom K-R, Huss-Danell K. Effects of water stress on nitrogenase activity in Alnus incana. Physiol Plant, 1987, 70(2): 342-348.

[29]

Uliassi DD, Ruess RW. Limitations to symbiotic nitrogen fixation in primary succession on the Tanana River floodplain. Ecology, 2002, 83(1): 88-103.

[30]

Uri V, Tullus H, Lõhmus K. Biomass production and nutrient accumulation in short-rotation grey alder (Alnus incana (L.) Moench) plantation on abandoned agricultural land. For Ecol Manag, 2002, 161(1–3): 169-179.

[31]

Van Reeuwijk LP (2002) Procedures for soil analysis. 6th edn. ISRIC, FAO, Wageningen, Technical Paper 9. p 120

[32]

Woś A (1999) Polish Climate. PWN Publishing, Warsaw. p 301 (in Polish)

AI Summary AI Mindmap
PDF

99

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/