Regulatory effect of salicylic acid and methyl jasmonate supplementation on ergosterol production in Hericium erinaceus mycelia

Xiaodong Dai , Yaguang Zhan , Jiechi Zhang , Piqi Zhang , Zenghua Han , Qingfang Ma , Xianghui Kong , Jianing Liu , Yinpeng Ma

Journal of Forestry Research ›› 2015, Vol. 26 ›› Issue (1) : 71 -77.

PDF
Journal of Forestry Research ›› 2015, Vol. 26 ›› Issue (1) : 71 -77. DOI: 10.1007/s11676-014-0014-8
Original Paper

Regulatory effect of salicylic acid and methyl jasmonate supplementation on ergosterol production in Hericium erinaceus mycelia

Author information +
History +
PDF

Abstract

We evaluated the biomass and ergosterol content of Hericium erinaceus mycelium, and extracellular enzyme activities in H. erinaceus liquid culture following salicylic acid (SA) and methyl jasmonic acid (MeJA) supplementation. The optimal SA concentration was 100 µmol·L−1, where the highest ergosterol content of 2.33 mg·g−1 was obtained following 6-day cultivation with 100 µmol·L−1 SA supplementation, and which was significantly higher than the unsupplemented control (p < 0.01). Following 4-day supplementation with 50 μmol·L−1 MeJA, the highest ergosterol content obtained was 1.988 mg·g−1, which was 25.8 % higher than the unsupplemented control. Our data indicate that SA and MeJA supplementation improves ergosterol content in H. erinaceus mycelium.

Keywords

Hericium erinaceus / Ergosterol / Salicylic acid / Methyl jasmonate / Inducers

Cite this article

Download citation ▾
Xiaodong Dai, Yaguang Zhan, Jiechi Zhang, Piqi Zhang, Zenghua Han, Qingfang Ma, Xianghui Kong, Jianing Liu, Yinpeng Ma. Regulatory effect of salicylic acid and methyl jasmonate supplementation on ergosterol production in Hericium erinaceus mycelia. Journal of Forestry Research, 2015, 26(1): 71-77 DOI:10.1007/s11676-014-0014-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Blanco F, Salinas P, Cecchini NM, Jordana X, Van Hummelen P, Alvarez ME, Holuigue L. Early genomic responses to salicylic acid in Arabidopsis. Plant Mol Biol, 2009, 70: 79-102.

[2]

Bulgakov VP, Tchernoded GK, Mischenko NP, Khodakovskays MV, Glazunov VP, Radchenko SV. Effect of salicylic acid, methyl jasmonate, ethephon and cantharidin on anthraquinone production by Rubia cordifolia callus cultures transformed with the role B and role C gene. Biotechnol Lett, 2002, 97(3): 213-221.

[3]

Carvalhais LC, Dennis PG, Badri DV, Tyson GW, Vivanco JM, Schenk PM. Activation of the jasmonic acid plant defence pathway alters the composition of rhizosphere bacterial communities. PLoS One, 2013, 8: 1-5.

[4]

Cheong JJ, Choi YD. Methyl jasmonate as a vital substance in plants. Trends Genet, 2003, 19: 409-413.

[5]

Endo J, Takahashi W, Ikegami T, Beppu T, Tanaka O. Induction of flowering by inducers of systemic acquired resistance in the Lemna plant. Biosci Biotechnol Biochem, 2009, 73(1): 183-185.

[6]

Goossens A, Hakkinen ST, Laakso I, Seppanen-Laakso T, Biondi S, De Sutter V, Lammertyn F, Nuutila AM, Soderlund H, Zabeau M, Inze D, Oksman-Caldentey KM. A functional genomics approachtoward the understanding of secondary metabolism in plant cells. Proc Natl Acad Sci USA, 2003, 100(14): 8595-8600.

[7]

Halaouili S, Asther M, Sigoillot JC. Fungal tryrosinases: new prospects in molecular characteristics. Bioengineering and biotechnological applications. Appl Microbiol, 2006, 100: 219-232.

[8]

Han ZH, Zhang PQ, Kong XH, Ma QF, Dai XD, Zhang JC. Extracellular enzyme activities, mycelial growth rates and fruit body yields of ten Auricularia auricular strains. Acta Edulis Fungi, 2007, 14(4): 41-46.

[9]

Han ZH, Zhang JC, Zhang PQ, Dai XD, Liu JN, Yu DS. Study on the activity change of extracellular enzymes in stock culture of Auricularia Aauricular. Biotechnology, 2009, 19(5): 14-16.

[10]

Kang SM, Jung HY, Kang YM, Yunb DJ, Bahkb JD, Yang JK, Choi MS. Effect of methyl jasmonate and salicylic acid on the production of tropane alkaloids and the expression of PMT and H6H in adventitious root cultures of Scopolia parviflora. Plant Sci, 2004, 166(3): 745-751.

[11]

Kawagishi H, Shimada A, Shiral R, Okamoto K, Ojima F, Sakamoto H, Ishiguro Y, Furukawa S. Erinacines A, B and C, strong stimuLators of nerve growth factors (NGF) synthesis from mycelia of Hericium erinaceum. Tetrahedron Lett, 1994, 35: 1569-1572.

[12]

Kenmoku H, Sassa T, Kato N. Isolation of erinacine P, a new parental metabolite of cyathane-xylosides, from Hericium erinaceum and its biomimetic conversion into erinacines A and B. Tetrahedron Lett, 2000, 41: 4389-4393.

[13]

Khan A, Tania M, Liu R, Rahman MM. Hericium erinaceus: an edible mushroom with medicinal values. J Complement Integr Med, 2013, 10: 253-258.

[14]

Li J, Lu L, Dai C, Chen K, Qiu J. A comparative study on sterols of ethanol extract and water extract from Hericium erinaceus. China J Chin Mater Med, 2001, 26(12): 831-834. (In Chinese)

[15]

Ma BJ, Shen JW, Yu HY, Ruan Y, Wu TT, Zhao X. Hericenones and erinacines: stimulators of nerve growth factor (NGF) biosynthesis in Hericium erinaceus. Mycology, 2010, 1: 92-98.

[16]

Martin HM. Induction of two indirect defences benefits Lima bean Phaseolus lunatus, Fabaceae in nature. J Ecol, 2004, 92: 527-536.

[17]

Mattila P, Lampi A, Ronkainen R, et al. Sterol and vitamin D2 contents in wild and cultivated mushrooms. Food Chem, 2002, 76: 293-298.

[18]

Miao Z, Wei Z, Yuan Y. Study on the effects of salicylic acid on taxol biosynthesis. Chin J Biotechnol, 2000, 16(4): 509-513. (In Chinese)

[19]

Mizuno T. Bioactive substances in Hericium erinaceus (Bull.: Fr.) Pers. and its medicinal utilization. Int J Med Mushrooms, 1999, 1: 105-119.

[20]

Qiu Y, Jia N, Wang L. Progress of studies on elicitor’s application in taxal production in Taxus cell cyktyres. Chin Bull Bot, 2003, 20(2): 184-189. (In Chinese)

[21]

Stintzi A, Weber H, Reymond P, Browse J, Farmer EE. Plant defense in the absence of jasmonic acid: the role of cyclopentenones. PNAS, 2001, 98: 12837-12842.

[22]

Takaishi Y, Kawagishi Y. Glycosides of ergosterol derivatives from Hericium erinaceus. Phytochemistry, 1991, 30: 4117-4120.

[23]

Terashita T, Nakaie Y, Inoue T. Role of metal proteinasesin the fruitbody formation of Hypsizygus marmoreus. J Wood Sci, 1998, 44(5): 379-384.

[24]

Volkman JK. Sterols in microorganisms. Appl Microbiol Biotechnol, 2003, 60: 495-506.

[25]

Wang ZJ, Luo DH, Liang ZY. Structure of polysaccharides from the fruiting body of Hericium erinaceus pers. Carbohydr Polym, 2004, 57: 241-247.

[26]

Wasternack C. Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann Bot-london, 2007, 100: 681-697.

[27]

Xiao CQ, Gao H, Chi R. Progress in the application of elicitors to promote the production of plant secondary metabolites. Nat Prod Res Dev, 2004, 16(5): 473-476. (In Chinese)

[28]

Xu W, Yan SC. The function of jasmonic acid in induced plant defence. Acta Ecolog Sin, 2005, 25(8): 2074-2082. (In Chinese)

[29]

Yang Y, Jiang R, Chen Y, Gao Q. Study on chemical composition of Hericium erinaceus polysaccharide HEP-2. Nat Prod Res Dev, 2004, 16: 194-197.

[30]

Zhang A, Sun P, Zhang J, Tang C, Fan J, Shi X, Pan Y. Structural investigation of a novel fucoglucogalactan isolated from the fruiting bodies of the fungus Hericium erinaceus. Food Chem, 2007, 104: 451-456.

[31]

Zhang AQ, Fu L, Xu M, Sun PL, Zhang JS. Structure of a water-soluble hetero-polysaccharide from fruiting bodies of Hericium erinaceus. Carbohydr Polym, 2012, 88: 558-561.

AI Summary AI Mindmap
PDF

154

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/