Progress on pollen-stigma compatibility in Corylus (hazelnuts): a review

Qing-hua Ma , Gui-xi Wang , Wei-jian Liang , Xin Chen , Li-song Liang , Tian-tian Zhao

Journal of Forestry Research ›› 2013, Vol. 24 ›› Issue (3) : 397 -402.

PDF
Journal of Forestry Research ›› 2013, Vol. 24 ›› Issue (3) : 397 -402. DOI: 10.1007/s11676-013-0372-7
Review Article

Progress on pollen-stigma compatibility in Corylus (hazelnuts): a review

Author information +
History +
PDF

Abstract

The genus Corylus is an important member in the Betulaceae family of the order Fagales. Self-incompatibility is one of the choke points in breeding and hazelnut production. This reviewe describes, the progress on pollen-stigma compatibility in Corylus, including basic reproductive characteristics, S-alleles testing and their applications, inter-specific hybridization, self-compatibility in wild species, and recent molecular research on the genetic mechanism of compatibility. Compared with other species, progress on pollen-stigma compatibility (sporophytic self-incompatibility, SSI) in Corylus is slow, especially those in the Brassicaceae family. De novo approaches should be used to target the unique reproductive characteristics of hazelnuts. The continuous improvement of technological platforms based on molecular biology should broaden the pathways in investigating compatibility in Corylus. In addition, research should be conducted on overcoming self- and cross-incompatibility, and approaches based on biological, chemical, and physical principles should be introduced. Both theoretical and practical study of compatibility in Corylus should be devoted to change the self-incompatibility trait into a benefit in the species evolvement and nut quality establishment.

Cite this article

Download citation ▾
Qing-hua Ma, Gui-xi Wang, Wei-jian Liang, Xin Chen, Li-song Liang, Tian-tian Zhao. Progress on pollen-stigma compatibility in Corylus (hazelnuts): a review. Journal of Forestry Research, 2013, 24(3): 397-402 DOI:10.1007/s11676-013-0372-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bassil NV, Azarenko AN. RAPD markers for self-incompatibility in Corylus avellana L. Acta Horticulturae, 2001, 556: 537-542.

[2]

Beyhan N, Odabas F. 1997. The investigation of compatibility relationship of some hazelnut cultivars. Acta Horticulturae, 445, online abstract.

[3]

Caramiello R, Maffei M, Miaja ML, Me G. Pollen surface alkane composition of Corylus avellana × Corylus maxima hybrids. Acta Horticulturae, 2001, 556: 545-550.

[4]

Chen Q, Mu D, Yi MF, Ming J, Liu C. Effects of different pollination methods on bypassing pre-fertilization barriers in lily breeding. Journal of China Agricultural University, 2007, 12(4): 35-40.

[5]

Dhaliwal AS, Malik CP, Singh MB. Overcoming incompatibility in Brassica campestris L. by carbon dioxide and dark fixation of the gas by self- and cross-pollinated pistils. Annals of Botany, 1981, 48(2): 227-234.

[6]

Diatchenko L, Lau YF, Campbell AP, Chenchik A, Moqadam F, Huang B, Lukyanov S, Lukyanov K, Gurskaya N, Sverdlov ED, Siebert PD. Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93: 6025-6030.

[7]

Erdoğan V, Mehlenbacher SA, Köksal AI, Haydar K. Incompatibility alleles expressed in pollen of Turkish hazelnut cultivars. Turkish Journal of Biology, 2005, 29: 111-116.

[8]

Erdoğan V, Mehlenbacher SA. Preliminary results on inter-specific hybridization in Corylus. Acta Horticulturae, 1997 445.

[9]

Erdoğan V, Mehlenbacher SA. Interspecific hybridization in hazelnut (Corylus). Journal of the American Society for Horticultural Science, 2000, 125: 489-497.

[10]

Erdoğan V, Mehlenbacher SA. Incompatibility in wild Corylus species. Acta Horticulturae, 2001, 556: 163-169.

[11]

Feng L, Liu H, Liu Y, Lu ZH, Guo GW, Guo SP, Zheng HW, Gao YN, Cheng SJ, Wang J, Zhang KT, Zhang Y. Power of deep sequencing and agilent microarray for gene expression profiling study. Molecular Biotechnology, 2010, 45: 101-110.

[12]

Ferrari TE, Wallace DH. Incompatibility on Brassica stigmas is overcome by treating pollen with cycloheximide. Science, 1977, 196: 436-438.

[13]

Fideghelli C, De Salvador FR. World hazelnut situation and perspectives. Acta Horticulturae, 2009, 845: 39-51.

[14]

Gaude T, Dumas C. Molecular and cellular events of self incompatibil ity. International Review of Cytology — a Survey of Cell Biology, 1987, 107: 333-366.

[15]

Ghanbaril A, Me G, Talaie A, Vezvaie A. Studies on self-Incompatibility alleles in some progenies of hazelnut (Corylus avellana L.) using fluorescence microscope. International Journal of Agriculture and Biology, 2004, 6: 113-115.

[16]

Grau P, France A, Gerding M, Lavin A, Torres A. Preliminary evaluation of hazelnut performance in Chile. Acta Horticulturae, 2001, 556: 49-58.

[17]

Hampson CR, Azarenko AN, Soeldner A. Pollen-stigma interactions following compatible and incompatible pollinations in hazelnut. Journal of the American Society for Horticultural Science, 1993, 118: 814-819.

[18]

Hampson CR, Coleman G, Azarenko AN. Does the genome of Corylus avellana L. contain sequences homologous to the self-incompatibility gene of Brassica?. Theoretical and Applied Genetics, 1996, 93: 759-764.

[19]

Heslop-Harrison J, Knox RB, Heslop-Harrison Y. Pollen wall proteins: exine-held fractions associated with the incompatibility response in Cruciferae. Theoretical and Applied Genetics, 1974, 44: 133-137.

[20]

Heslop-Harrison Y, Heslop-Harrison JS, Heslop-Harrison J. Germination of Corylus avellana L. (hazel) pollen: hydration and the function of the oncus. Acta Botanica Neerlandica, 1986, 35: 265-284.

[21]

Johansson E. Floral biology trials with hazel at Alnarp 1924–1926, 1927 3 20

[22]

Kuzmanović L, De Pace C, Rugini E. Allele segregation at SSR loci and allele traceability fot hazelnut accessions (Corylus avellana L.) from landraces grown in the Latium region (Italy). Acta Horticulturae, 2009, 845: 109-114.

[23]

Lagerstedt HB. Janick J, Moore J N. Filberts. Advances in Fruit Breeding. 1975, West Lafayette: Purdue University press, 456 489

[24]

Li CQ, Zhou QH, Song HY, Ren XS, Si J, Wu NB. Effects of quercetin on self-incompatibility and SRK activity in Brassica oleracea L. Acta Horticulturae Sinica, 2005, 32(5): 878-880.

[25]

Li YH, Deng MQ, Jing SX, Liu FQ. The influence of laser and high-voltage electrostatic field on incompatibility of strawberry interspecific hybridization. Acta Laser Biology Sinica, 1995, 4(2): 636-641.

[26]

Liang P, Pardee AB. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science, 1992, 257: 967-971.

[27]

Liang WJ, Dong DF. Big Nut Hazelnut Breeding and Cultivation. 2002, Beijing: China Forestry Publishing House

[28]

Liang WJ, Xie M, Xie WY. Studies on hazelnut breeding in northern China. Acta Horticulturae, 1994 351.

[29]

Marinoni DT, Beltramo C, Akkak A, Destefanis ML, Boccacci P, Botta R. Gene expression and sporophytic self-incompatibility in hazelnut. Acta Horticulturae, 2009, 845: 227-231.

[30]

Matsubara S. Overcoming self incompatibility by cytokinin treatment on Lilium longiflorum. Botany Magazine (Tokyo), 1973, 86: 43-46.

[31]

Mehlenbacher SA, Smith DC. Partial self-compatibility in ‘Tombul’ and ‘Montebello’ hazelnuts. Euphytica, 1991, 56: 231-236.

[32]

Mehlenbacher SA, Smith DC. Self-compatible seedlings of the cutleaf hazelnut. HortScience, 2006, 41(2): 482-483.

[33]

Mehlenbacher SA, Thompson MM. Dominance relationships among S-alleles in Corylus avellana L. Theoretical and Applied Genetics, 1988, 76: 669-672.

[34]

Mehlenbacher SA. Hazelnuts (Corylus). Acta Horticulturae, 1990, 290: 791-836.

[35]

Mehlenbacher SA. Revised dominance hierarchy for S-alleles in Corylus avellana L. Theoretical and Applied Genetics, 1997, 94: 360-366.

[36]

Mehlenbacher SA. Testing compatibility of hazelnut crosses using fluorescence microscopy. Acta Horticulturae, 1997, 445: 167-171.

[37]

Mehlenbacher SA. Genetic resources for hazelnut state of art and future perspectives. Acta Horticulturae, 2009, 845: 33-38.

[38]

Meng JL. Genetics of Plant Reproduction. 1995, Beijing: Science Press, 258 267

[39]

Nasrallah ME, Nasrallah JB. Pollen-stigma signaling in the sporophytic self-incompatibility response. Plant Cell, 1993, 5: 1325-1335.

[40]

Okay Y, Ayfer M. Selection of pollinators for Tombul hazelnut cultivar. Acta Horticulturae, 1994 351.

[41]

Pandey KK. Overcoming incompatibility and promoting genetic recombination in flowering plants. New Zealand Journal of Botany, 1979, 7: 645-663.

[42]

Pedica A, Vittori D, Ciofo A, De Pace C, Bizzarri S, Del Lungo M. Evaluation and utilization of C. avellana genetic resources to select clones for hazelnut varietal turnover in the Latium region (ITALY). Acta Horticulturae, 1997 445.

[43]

Pomper KW, Azarenko AN, Bassil N, Davis JW, Mehlenbacher SA. Identification of random amplified polymorphic DNA (RAPD) markers for self-incompatibility alleles in Corylus avellana L. Theoretical and Applied Genetics, 1998, 97: 479-487.

[44]

Roggen H, van Dijk AJ, Dorsman C. ‘Electric aided’ pollination: a method of breaking incompatibility in Brassica oleracea L. Euphytica, 1972, 21: 181-184.

[45]

Roggen H, van Dijk AJ. ‘Thermally aided pollination’: a new method of breaking self-incompatibility in Brassica oleracea L. Euphytica, 1976, 25: 643-646.

[46]

Sastri DC, Shivanna KR. Attempts to overcome interspecific incompatibility in Sesamum by using recognition pollen. Annals of Botany, 1976, 40(4): 891-893.

[47]

Schuster CE. Filberts: 2. Experimental data on filbert pollination, 1924, 208: 548-555.

[48]

Sharma N, Bajaj M, Shivanna KR. Overcoming self-incompatibility through the use of lectins and sugars in Petunia and Eruca. Annals of Botany, 1984, 55: 139-141.

[49]

Sharma N, Shivanna K. Lectin-like components of pollen and complementary saccharide moiety of the pistil are involved in self-incompatibility recognition. Current Science, 1983, 52: 913-916.

[50]

Sood R, Prabha K, Govil S, Gupta SC. Overcoming self-incompatibility in Ipomoea Cairica by IAA. Euphytica, 1982, 31: 333-339.

[51]

Thompson MM, Lagerstedt HB, Mehlenbacher SA. Janick J, More J N. Hazelnuts. Fruit Breeding Vol: III, Nuts. 1996, New York: Wiley J & Sons, 125 184

[52]

Thompson MM. Genetics of incompatibility in Corylus avellana L. Theoretical and Applied Genetics, 1979, 54: 133-116.

[53]

Thompson MM. Incompatibility alleles in Corylus avellana cultivars. Theoretical and Applied Genetics, 1979, 54: 29-33.

[54]

van Creij MGM, Kerckhoffs DMFJ, van Tuyl JM. Application of four pollination techniques and of hormone treatment for bypassing interspecific crossing barriers in Lilium L. Acta Horticulturae, 1999, 508: 267-274.

[55]

van’t Veer LJ, Dai HY, van de Vijver MJ, He YD, Augustinus AMH, Mao M, Hans LP, van der Kooy K, Marton MJ, Witteveen AT, Schreiber GJ, Kerkhoven RM, Roberts C, Linsley PS, René B, Friend SH. Gene expression profiling predicts clinical outcome of breast cancer. Nature, 2002, 415: 530-536.

[56]

Velculescu VE, Vogelstein B, Kinzler KW. Analysing uncharted transcriptomes with SAGE. Trends in Genetics, 2000, 16: 423-425.

[57]

Velculescu VE, Zhang L, Vogelstein B, Kinzler KW. Serial analysis of gene expression. Science, 1995, 270: 484-487.

[58]

Vicol A, Botu I, Botu M, Giorgota A. Preliminary study of incompatibility alleles expressed in pollen of Romanian hazelnut cultivars. Bulletin UASVM Horticulture, 2009, 66(1): 480-483.

[59]

Zhai XJ, Dong FX, Zhang RQ, Wang GX, Yi MP, Liang LS. Research on the compatibility of five Corylus specie. Journal of Central South University of Forestry and Technology, 2009, 29(4): 26-30.

[60]

Zhang YH, Liu L, Liang WJ, Zhang YM. China Fruit’s Monograph · Hazelnut Volume. 2005, Beijing: China Forestry Publishing House

AI Summary AI Mindmap
PDF

165

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/