Impacts of freezing and thermal treatments on dimensional and mechanical properties of wood flour-HDPE composite

Wei-jun Yang , Yan-jun Xie , Hai-gang Wang , Bao-yu Liu , Qing-wen Wang

Journal of Forestry Research ›› 2013, Vol. 24 ›› Issue (1) : 143 -147.

PDF
Journal of Forestry Research ›› 2013, Vol. 24 ›› Issue (1) : 143 -147. DOI: 10.1007/s11676-013-0334-0
Original Paper

Impacts of freezing and thermal treatments on dimensional and mechanical properties of wood flour-HDPE composite

Author information +
History +
PDF

Abstract

Wood plastic composite (WPC) of wood flour (WF), high density polyethylene (HDPE), maleic anhydride-grafted polyethylene (MAPE) and lubricant was prepared by extrusion, and then exposed to different temperatures to evaluate the effects of freezing and thermal treatment on its dimensional and mechanical properties. At elevated temperatures, WPC expanded rapidly initially, and then contracted slowly until reaching an equilibrium state. Treatment at 52°C and relative humidity of 50% for 16 days improved the mechanical properties of WPC: flexure, tensile strength, and izod unnotched impact strength increased by 8%, 10% and 15%, respectively. Wide-angle X-ray diffraction (XRD) tests showed that the degree of crystalization of HDPE in WPC declined with increasing treatment temperature.

Keywords

wood plastic composite / freezing treatment / thermal treatment / dimension / mechanical properties / X-ray diffraction

Cite this article

Download citation ▾
Wei-jun Yang, Yan-jun Xie, Hai-gang Wang, Bao-yu Liu, Qing-wen Wang. Impacts of freezing and thermal treatments on dimensional and mechanical properties of wood flour-HDPE composite. Journal of Forestry Research, 2013, 24(1): 143-147 DOI:10.1007/s11676-013-0334-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Adhikary K.B., Pang S.S., Staiger M.P.. Effects of the accelerated freeze-thaw cycling on physical and mechanical properties of wood flour-recycled thermoplastic composites. Polymer Composites, 2010, 31(2): 185-194.

[2]

Aklonis J.J., MacKnight W.J.. Introduction to polymer viscoelasticity. 1983, New York: John Wiley & Sons, 142.

[3]

Alireza A.. Wood-plastic composites as promising green-composites for automotive industries. Bioresource Technology, 2008, 99(11): 4661-4667.

[4]

Alireza K.. Effects of formulation design on thermal properties of wood/thermoplastic composites. Journal of Composite Materials, 2010, 44(18): 2205-2215.

[5]

Amash A., Zugenmaier P.. Thermal and dynamic mechanical investigations on fiber-reinforced polypropylene composites. Journal of Applied Polymer Science, 1997, 63(9): 1143-1154.

[6]

Anatole A.K.. Wood-plastic composites. 2007, Hoboken, New Jersey: John Wiley & Sons

[7]

Andrew J.S., Michael P.W., Donald A.B.. Investigation of the temperature-dependent mechanical behavior of a polypropylene-pine composite. Journal of Materials in Civil Engineering, 2009, 21(9): 460-466.

[8]

Follrich J., Gindl W., Mundigler N.. Effects of long-term storage on the mechanical characteristics of wood plastic composites produced from thermally modified wood fibers. Journal of Thermoplastic Composite Materials, 2010, 23(6): 845-853.

[9]

Han G., Lei Y., Wu Q., Kojima Y., Suzuki S.. Bamboo-fiber filled high density polyethylene composites: effect of coupling treatment and nanoclay. Journal of Polymers and the Environment, 2008, 16(2): 123-130.

[10]

Hung K.C., Wu J.H.. Mechanical and interfacial properties of plastic composite panels made from esterified bamboo particles. Journal of Wood Science, 2010, 56(3): 216-221.

[11]

Jeanette M.P., Laurent M.M.. Durability of wood flour-plastic composites exposed to accelerated freeze-thaw cycling, Part I, rigid PVC matrix. Journal of Vinyl and Additive Technology, 2005, 11(1): 1-8.

[12]

Jeanette M.P., Laurent M.M.. Durability of wood flour-plastic composites exposed to accelerated freeze-thaw cycling, Part II, high density polyethylene matrix. Journal of Applied Polymer Science, 2006, 100(1): 35-39.

[13]

Jiang K.Y., Guo Y.L., Zeng W.L., Xin Z.S.. The preparation of WPC for SLS rapid prototyping and manufacturing. Advanced Materials Research, 2010, 113–116: 1722-1725.

[14]

Lee H.K., Dae S.K.. Preparation and physical properties of wood/polypropylene/clay nanocomposites. Applied Polymer Science, 2009, 111(6): 2769-2776.

[15]

Lei Y., Wu Q.L., Craig M.C., Yao F., Xu Y.J.. Influence of nanoclay on properties of HDPE/wood composites. Journal of Applied Polymer Science., 2007, 106(6): 3958-3966.

[16]

Magnus B., Kristiina O.. Silane crosslinked wood plastic composites: Processing and properties. Composites Science and Technology, 2006, 66(13): 2177-2186.

[17]

Magnus B., Kristiina O.. The use of silane technology in crosslinking polyethylene/wood flour composites. Composites Part A: Applied Science and Manufacturing, 2006, 37(5): 752-765.

[18]

Nadir A., Songklod J., Vallayuth F., Piyawade B.. Effect of thermal treatment of wood-fiber on properties of flat-pressed wood plastic composites. Polymer Degradation and Stability, 2011, 96(5): 818-822.

[19]

Ou R.X., Zhao H., Sui S.J., Song Y.M., Wang Q.W.. Reinforcing effects of Kevlar fiber on the mechanical properties of wood flour/high density-polyethylene composites. Composites Part A: Applied Science and Manufacturing, 2010, 41(9): 1272-1278.

[20]

Pilarski J.M., Matuana L.M.. Durability of wood flour-plastic composites exposed to accelerated freeze-thaw cycling. I. rigid PVC matrix. Journal of Vinyl and Additive Technology, 2006, 11(1): 1-8.

[21]

Sain M.M., Balatinecz J., Law S.. Creep fatigue in engineered wood fiber and plastic compositions. Applied Polymer Science, 2000, 77(2): 260-268.

[22]

Schildmeyer A.J.. Temperature and time dependent behaviors of a wood-polypropylene composite. 2006, Washington: Washington State University

[23]

Simpson W., Ten W.A.. Physical and moisture relation of wood. Wood Handbook. 1999, Madison, WI: Forest Products Society

[24]

Smith P.M., Wolcott M.P.. Opportunities for wood/natural fiber-plastic composites in residential and industrial applications. Forest Product Journal, 2006, 56(3): 4-11.

[25]

Sperling L.H.. Introduction to physical polymer science. 2006, New York: John Wiley and Sons

[26]

Wang W.H., Morrell J.J.. Effects of moisture and temperature cycling on material properties of a wood/plastic composite. Forest Product Journal, 2005, 55(10): 81-83.

[27]

Yang H.S., Wolcott M.P., Kim H.S., Kim H.J.. Thermal properties of lignocellulosic filler-thermoplastic polymer bio-composites. Journal of Thermal Analysis and Calorimetry, 2005, 82(1): 157-160.

AI Summary AI Mindmap
PDF

144

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/