Low temperature, IBA concentrations and optimal time for adventitious rooting of Eucalyptus benthamii mini-cuttings

Gilvano Ebling Brondani , Francisco José Benedini Baccarin , Heron Wilhelmus de Wit Ondas , José Luiz Stape , Antonio Natal Gonçalves , Marcilio de Almeida

Journal of Forestry Research ›› 2012, Vol. 23 ›› Issue (4) : 583 -592.

PDF
Journal of Forestry Research ›› 2012, Vol. 23 ›› Issue (4) : 583 -592. DOI: 10.1007/s11676-012-0298-5
Original Paper

Low temperature, IBA concentrations and optimal time for adventitious rooting of Eucalyptus benthamii mini-cuttings

Author information +
History +
PDF

Abstract

Eucalyptus benthamii is a forest species of economic interest that has difficulty with seed production and also is considered to have difficulty with adventitious rooting using propagation techniques, such as cutting or mini-cutting. We aimed to assess the adventitious rooting percentage under different storage times in low temperatures and at various IBA (indole-3-butyric acid) concentrations to determine the optimal time of permanence for rooting Eucalyptus benthamii minicuttings in a greenhouse. Shoots collected from mini-stumps cultivated in a semi-hydroponic system were used to obtain the mini-cuttings. For the first experiment, the mini-cuttings were stored at 4°C for 0 (immediate planting), 24, 48, 72, 96 and 120 h. The second experiment evaluated the rooting dynamic to determine the optimal time of permanence for minicuttings in a greenhouse. The basal region of the mini-cutting was treated with various IBA solutions: 0 (free of IBA), 1,000, 2,000, 3,000 and 4,000 mg·L−1. Every seven days (0 (immediate planting), 7, 14, 21 and 28 days), destructive sampling of the mini-cuttings was performed to evaluate the histology of the adventitious rooting. Eucalyptus benthamii minicuttings should be rooted immediately after the collection of the shoots. The 2,000 mg·L−1 IBA concentration induced a greater speed and percentage of adventitious rooting, and an interval of 35 to 42 days was indicated for permanence of the mini-cuttings in the greenhouse. Exposure to low temperature induced adventitious root formation with diffuse vascular connections.

Keywords

rhizogenesis / plant cloning / mini-cutting technique / histological analysis / indole-3-butyric acid

Cite this article

Download citation ▾
Gilvano Ebling Brondani, Francisco José Benedini Baccarin, Heron Wilhelmus de Wit Ondas, José Luiz Stape, Antonio Natal Gonçalves, Marcilio de Almeida. Low temperature, IBA concentrations and optimal time for adventitious rooting of Eucalyptus benthamii mini-cuttings. Journal of Forestry Research, 2012, 23(4): 583-592 DOI:10.1007/s11676-012-0298-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Almeida F.D., Xavier A., Dias J.M.M., Paiva H.N.. Auxin (IBA and NAA) effects on minicuttings rooting of Eucalyptus cloeziana F. Muell. clones. Revista Árvore, 2007, 31(3): 455-463.

[2]

Amri E., Lyaruu H.V.M., Nyomora A.S., Kanyeka Z.L.. Vegetative propagation of African Blackwood (Dalbergia melanoxylon Guill. & Perr.): effects of age of donor plant, IBA treatment and cutting position on rooting ability. New Forests, 2010, 39(2): 183-194.

[3]

Baltierra X.C., Montenegro G., García E.. Ontogeny of in vitro rooting processes in Eucalyptus globulus. In Vitro Cellular & Developmental Biology — Plant, 2004, 40(5): 499-503.

[4]

Bennett I.J., McDavid D.A.J., McComb J.A.. The influence of ammonium nitrate, pH and indole butyric acid on root induction and survival in soil of micropropagated Eucalyptus globulus. Biologia Platarum, 2003, 47(3): 355-360.

[5]

Benson D., McDougall L.. Ecology of Sydney plant species. Part 6 Dicotyledon family Myrtaceae. Cunninghamia, 1998, 5(4): 809-987.

[6]

Benson D.H.. Aspects of the ecology of a rare tree species, Eucalyptus benthamii, at Bents Basin, Wallacia. Cunninghamia, 1985, 1(3): 371-383.

[7]

Brondani G.E., Grossi F., Wendling I., Dutra L.F., Araujo M.A.. IBA application for rooting of Eucalyptus benthamii Maiden & Cambage x Eucalyptus dunnii Maiden minicuttings. Acta Scientiarum. Agronomy, 2010, 32(4): 667-674.

[8]

Butcher P.A., Skinner A.K., Gardiner C.A.. Increased inbreeding and interspecies gene flow in remnant populations of the rare Eucalyptus benthamii. Conservation Genetics, 2005, 6(2): 213-226.

[9]

Corrêa L.R., Fett-Neto A.G.. Effects of temperature on adventitious root development in microcuttings of Eucalyptus saligna Smith and Eucalyptus globulus Labill. Journal of Thermal Biology, 2004, 29(6): 315-324.

[10]

Cunha A.C.M.C.M., Wendling I., Souza Júnior L.. Productivity and survival of Eucalyptus benthamii Maiden et Cambage ministumps in hydroponics system and in plastic tubes. Ciência Florestal, 2005, 15(3): 307-310.

[11]

Dai W., Cheng Z.M., Sargent W.A.. Expression of the rolB gene enhances adventitious root formation in hardwood cuttings of aspen. In Vitro Cellular & Developmental Biology — Plant, 2004, 40(4): 366-370.

[12]

Ferreira E.M., Alfenas A.C., Mafia R.G., Leite H.G., Sartorio R.C., Penchel Filho R.M.. Determination of the optimum time for rooting of mini-cuttings of Eucalyptus spp. clones. Revista Árvore, 2004, 28(2): 183-187.

[13]

Fogaça C.M., Fett-Neto A.G.. Role of auxin and its modulators in the adventitious rooting of Eucalyptus species differing in recalcitrance. Plant Growth Regulation, 2005, 45(1): 1-10.

[14]

Garrido G., Ramon Guerrero J., Angel Cano E.. Origin and basipetal transport of the IAA responsible for rooting of carnation cuttings. Physiologia Plantarum, 2002, 114(2): 303-312.

[15]

Goulart P.B., Xavier A.. Effect of storage time of minicuttings on the rooting of Eucalyptus grandis × E. urophylla clones. Revista Árvore, 2008, 32(4): 671-677.

[16]

Hartmann H.T., Kester D.E., Davies F.T. Jr, Geneve R.L.. Plant propagation: principles and practices, 2011 8th Edition São Paulo: Prentice-Hall, 915.

[17]

Hunt M.A., Trueman S.J., Rasmussen A.. Indole-3-butyric acid accelerates adventitious root formation and impedes shoot growth of Pinus elliottii var. elliottii × P. caribaea var. hondurensis cuttings. New Forests, 2011, 41(3): 349-360.

[18]

Husen A., Pal M.. Metabolic changes during adventitious root primordium development in Tectona grandis Linn. f. (teak) cuttings as affected by age of donor plants and auxin (IBA and NAA) treatment. New Forests, 2007, 33(3): 309-323.

[19]

Husen A.. Clonal propagation of Dalbergia sissoo Roxb. and associated metabolic changes during adventitious root primordium development. New Forests, 2008, 36(1): 13-27.

[20]

Jovanovic T., Booth T.H.. Improved species climatic profiles. 2002, Australia: Union Offset Printing: Joint Venture Agroforestry Program, Rural Industries Research and Development Corporation, 68.

[21]

Karnovsky M.J.. A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron microscopy. The Journal of Cell Biology, 1965, 27: 137-138.

[22]

Komatsu Y.H., Batagin-Piotto K.D., Brondani G.E., Gonçalves A.N., Almeida M.. In vitro morphogenic response of leaf sheath of Phyllostachys bambusoides. Journal of Forestry Research, 2011, 22(2): 209-215.

[23]

Li S.W., Xue L., Xu S., Feng H., An L.. Mediators, genes and signaling in adventitious rooting. The Botanical Review, 2009, 75(2): 230-247.

[24]

Lin MJ, Arnold R, Li BH, Yang MS. 2003. Selection of cold-tolerant eucalypts for Hunan Province. In: Turnbull JW (ed.), Eucalypts in Asia: proceedings of a international conference held in Zhanjiang, Guangdong, people’s Republic of China, 7–11 April 2003. ACIAR, 2003. pp 107–116. (ACIAR. Proceedings, 111)

[25]

Luckman G.A., Menary R.C.. Increased root initiation in cuttings of Eucalyptus nitens by delayed auxin application. Plant Growth Regulation, 2002, 38(1): 31-35.

[26]

Müller A., Düchting P., Weiler E.W.. A multiplex GC-MS/MS technique for the sensitive and quantitative single-run analysis of acidic phytohormones and related compounds, and its application to Arabidopsis thaliana. Planta, 2002, 216(1): 44-56.

[27]

Rasmussen A., Smith T.E., Hunt M.A.. Cellular stages of root formation, root system quality and survival of Pinus elliottii var. elliottii x P. caribaea var. hondurensis cuttings in different temperature environments. New Forests, 2009, 38(3): 285-294.

[28]

Sakai W.S.. Simple method for differential staining of paraffin embedded plant material using toluidine blue O. Biotechnic Histochemistry, 1973, 48(5): 247-249.

[29]

Schwambach J., Fadanelli C., Fett-Neto A.G.. Mineral nutrition and adventitious rooting in microcuttings of Eucalyptus globulus. Tree Physiology, 2005, 25(4): 487-494.

[30]

Schwambach J., Ruedell C.M., Almeida M.R., Penchel R.M., Araújo E.F., Fett-Neto A.. Adventitious rooting of Eucalyptus globulus × maidennii mini-cuttings derived from mini-stumps grown in sand bed and intermittent flooding trays: a comparative study. New Forests, 2008, 36(3): 261-271.

[31]

Stape J.L., Gonçalves J.L.M., Gonçalves A.N.. Relationships between nursery practices and field performance for Eucalyptus plantations in Brazil. New Forests, 2001, 22(1–2): 19-41.

[32]

Wendling I., Brondani G.E., Dutra L.F., Hansel F.A.. Mini-cuttings technique: a new ex vitro method for clonal propagation of sweetgum. New Forests, 2010, 39(3): 343-353.

[33]

Wendling I., Xavier A., Gomes J.M., Pires I.E., Andrade H.B.. Minicuttings and microcuttings rooting of Eucalyptus grandis W. Hill ex Maiden clones as affected by IBA. Revista Árvore, 2000, 24(2): 187-192.

[34]

Wendling I., Xavier A.. Indolbutiric acid and serial minicutting technique on rooting and vigor of Eucalyptus grandis clone minicuttings. Revista Árvore, 2005, 29(6): 921-930.

[35]

Zhu X.Y., Chai S.J., Chen L.P., Zhang M.F., Yu J.Q.. Induction and origin of adventitious roots from chimeras of Brassica juncea and Brassica oleracea. Plant Cell, Tissue and Organ Culture, 2010, 101(3): 287-294.

AI Summary AI Mindmap
PDF

161

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/