Factors affecting somatic embryogenesis in conifers

Jaime A. Teixeira da Silva , Ravindra B. Malabadi

Journal of Forestry Research ›› 2012, Vol. 23 ›› Issue (4) : 503 -515.

PDF
Journal of Forestry Research ›› 2012, Vol. 23 ›› Issue (4) : 503 -515. DOI: 10.1007/s11676-012-0266-0
Review Article

Factors affecting somatic embryogenesis in conifers

Author information +
History +
PDF

Abstract

This review seeks to examine the extreme response of isolated somatic plant cells of apical meristematic tissues of mature conifer trees towards specific stress conditions in vitro resulting in somatic embryogenesis. Signal molecules regulating embryo development have been described in angiosperms, but very little is known about somatic rejuvenation in conifers. Recent studies on cloning of mature conifers provide new perspectives on signal molecules on cellular dedifferentiation into the embryogenic pathway. Our recent studies show that signal molecules such as butenolide, calcium ions, salicylic acid, antioxidants, amino acids, triacontanol and 24-epibrassinolide all play an important role in the conversion of somatic cells into an embryogenic pathway in many recalcitrant pines. This constitutes a major breakthrough in forest biotechnology with many practical applications in clonal forestry.

Cite this article

Download citation ▾
Jaime A. Teixeira da Silva, Ravindra B. Malabadi. Factors affecting somatic embryogenesis in conifers. Journal of Forestry Research, 2012, 23(4): 503-515 DOI:10.1007/s11676-012-0266-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Anil V.S., Rao K.S.. Calcium-mediated signaling during sandalwood somatic embryogenesis: role for exogenous calcium as second messenger. Plant Physiology, 2000, 123: 1301-1311.

[2]

Aronen T.S., Pehkonen T., Malabadi R.B., Ryynanen L.. Somatic embryogenesis of Scots pine-advances in pine tissue culture at Metla. Vegetative propagation of conifers for enhancing landscaping and tree breeding. Proceedings of the Nordic meeting held in September 10th–11th 2008 at Punkaharju, Finland. Working Papers of the Finnish Forest Research Institute, 2008, 114: 68-71.

[3]

Aronen TS, Ryynanen L, Malabadi RB. 2007. Somatic embryogenesis of Scots pine: initiation of cultures from mature tree explants and enhancement of culture system [Abstract]. In: IUFRO Tree Biotechnology Conference, June 3–8, 2007, Ponta Delgada, Azores, Portugal, No. SIX. 2.

[4]

Arroyo-Herrera A., Gonzalez A.K., Moo R.C., Quiroz-Figueroa F.R., Loyola-Vargas V.M., Rodriguez-Zapata L.C., Burgeff D’Hondt C., Suarez-Solis V.M., Castano E.. Expression of WUSCHEL in Coffea canephora causes ectopic morphogenesis and increases somatic embryogenesis. Plant Cell, Tissue and Organ Culture, 2008, 94: 171-180.

[5]

Azam MME, Singh P, Ghanim A. 1997. Triacontanol and triterpenes from Tecomella undulata. In: Mukherjii AK (ed), World Forestry Congress, Anatylya. Turkey 13–22 Oct. 1997 (vol 3) topic 15: 31.

[6]

Becwar M.R., Nagamani R., Wann S.R.. Initiation of embryogenic cul tures and somatic embryo development in loblolly pine (Pinus taeda). Canadian Journal of Forest Research, 1990, 20: 810-817.

[7]

Benson E.E.. Do free radicals have a role in plant tissue culture recalcitrance?. In Vitro Cellular and Developmental Biology — Plant, 2000, 36: 163-170.

[8]

Biernbaum J.A., Houtz R.L., Ries S.K.. Field studies with crops treated with colloidally dispersed triacontanol. Journal of the American Society of Horticultural Science, 1998, 113: 679-684.

[9]

Bonga J.M.. Frozen storage stimulates the formation of embryo-like structures and elongating shoots in explants from mature Larix deciduas and L. × eurolepos. Plant Cell, Tissue and Organ Culture, 1996, 51: 195-200.

[10]

Bonga J.M.. The effect of collection dates and frozen storage on the formation of embryo-like structures and elongating shoots from explants from mature Larix deciduas and L. x eurolepis. Plant Cell, Tissue and Organ Culture, 1997, 51: 195-200.

[11]

Bonga J.M.. The effect of various culture media on the formation of embryo-like structures in cultures derived from explants taken from mature Larix deciduas. Plant Cell, Tissue Organ Culture, 2004, 77: 43-48.

[12]

Bonga J.M., Pond S.E.. Adventitious shoot formation in cultures of 30-year old Larix deciduas, L. leptolepis, and L. laricina trees. Plant Cell, Tissue and Organ Culture, 1991, 26: 45-51.

[13]

Bonga J.M., von Aderkas P.. Ahuja M.R., Libby W.J.. Rejuvenation of tissues from mature conifers and its implications for propagation in vitro. Clonal Forestry I, Genetics and Biotechnology. 1993, Berlin: Springer-Verlag, 182 199

[14]

Brosa D.. Biological effects of brassinosteroids. Critical Reviews in Biochemistry and Molecular Biology, 1999, 34: 339-358.

[15]

Cairney J., Pullman G.S.. The cellular and molecular biology of conifer embryogenesis. New Phytologist, 2007, 176: 511-536.

[16]

Charles C.C., Fletcher J.C.. Shoot apical meristem maintenance: the art of dynamic balance. Trends in Plant Science, 2003, 8(8): 394-401.

[17]

Chugh A., Khurana P.. Gene expression during somatic embryogenesis — recent advances. Current Science, 2002, 83(6): 715-730.

[18]

Dyachok J.V., Wiweger M., Kenne L., von Arnold S.. Endogenous nodfactor-like signal molecules promote early somatic embryo development in Norway spruce. Plant Physiology, 2002, 128: 523-533.

[19]

Egertsdotter U., Mo L.H., von Arnold S.. Extracellular proteins in embryogenic suspension cultures of Norway spruce (Picea abies). Physiologia Plantaram, 1993, 88: 315-321.

[20]

Egertsdotter U., von Arnold S.. Importance of arabinogalactan proteins for the development of somatic embryos of Norway spruce (Picea abies). Physiologia Plantaram, 1995, 93: 334-345.

[21]

Egertsdotter U., von Arnold S.. Development of somatic embryos in Norway spruce. Journal of Experimental Botany, 1998, 49(319): 155-162.

[22]

Feher A.. Why somatic plant cells starts to form embryos?. Plant Cell Monographs, 2006, 2: 85-101.

[23]

Feher A., Pasternak T.P., Dudits D.. Transition of somatic plant cells to an embryogenic state. Plant Cell, Tissue and Organ Culture, 2003, 74: 201-228.

[24]

Flematti G.R., Ghisalberti E.L., Dixon K.W., Trengove R.D.. A compound from smoke that promotes seed germination. Science, 2004, 305 5686 977

[25]

Fletcher J.C., Meyerowitz E.M.. Cell signaling within the shoot meristem. Current Opinion in Plant Biology, 2000, 3: 23-30.

[26]

Garin E., Bernier-Cardou M., Isabel N., Klimaszewska K., Plourde A.. Effect of sugars, amino acids, and culture technique on maturation of somatic embryos of Pinus strobus on medium with two gellan gum concentrations. Plant Cell, Tissue and Organ Culture, 2000, 62: 27-37.

[27]

Gupta P.K., Durzan D.J.. Shoot multiplication from mature trees of Douglas fir and sugar pine. Plant Cell Reports, 1985, 4: 177-179.

[28]

Hu Y.X., Bao F., Li X.Y.. Promotive effect of brassinosteroids on cell division involves a distinct CycD3-induction pathway in Arabidopsis. Plant Journal, 2000, 24: 693-701.

[29]

Ikeda-Iwai M., Umehara M., Satoh S., Kamada H.. Stress-induced somatic embryogenesis in vegetative tissues of Arabidopsis thaliana. Plant Journal, 2003, 34: 107-114.

[30]

Jack T.. Plant development going MADS. Plant Molecular Biology, 2001, 46: 515-520.

[31]

Jain N., Strik W. A., van Staden J.. Cytokinin and auxin-like activity of a butenolide isolated from plant-derived smoke. South African Journal of Botany, 2008, 74: 327-331.

[32]

Karami O., Aghavaisi B., Pour A.M.. Molecular aspects of somatic-to-embryogenic transition in plants. Journal of Chemical Biology, 2009, 2: 177-190.

[33]

Karami O., Saidi A.. The molecular basis for stress-induced acquisition of somatic embryogenesis. Molecular Biology Reports, 2009, 37(5): 2493-2507.

[34]

Kim S.K., Abe H., Little C.H.A., Pharis R.P.. Identification of two brassinosteroids from the cambial region of Scots pine (Pinus sylvestris) by gas chromatography-mass spectrometry, after detection using a dwarf rice lamina inclination bioassay. Plant Physiology, 1990, 94: 1709-1713.

[35]

Knight S.L., Mithchell C.A.. Stimulation productivity of hydroponic lettuce in controlled environments with triacontanol. Horticultural Science, 1987, 22: 1307-1309.

[36]

Light M.E., van Staden J.. The potential of smoke in seed technology. South African Journal of Botany, 2004, 70: 97-101.

[37]

Litvay J.D., Verma D.C., Johnson M.A.. Influence of loblolly pine (Pinus taeda L.) culture medium and its components on growth and somatic embryogenesis of wild carrot (Daucus carota L.). Plant Cell Reports, 1985, 4: 385-389.

[38]

Ma G.H., Bunn E., Dixon K., Flematti G.. Comparative enhancement of germination and vigor in seed and somatic embryos by the smoke chemical butenolide, 3-methyl-2H-furo [2, 3-c] pyran-2-one in Baloskion tetraphyllum (Restionaceae). In Vitro Cellular and Developmental Biology — Plant, 2006, 42: 305-308.

[39]

Malabadi R.B.. Effect of glutathione on maturation of somatic embryos derived from vegetative shoot apices of mature trees of Pinus roxburghii. Journal of Phytological Research, 2006, 19: 35-38.

[40]

Malabadi R.B., Choudhury H., Tandon P.. Initiation, maintenance and maturation of somatic embryos from thin apical dome sections in Pinus kesiya (Royle ex. Gord) promoted by partial desiccation and Gellan gum. Scientia Horticulture, 2004, 102: 449-459.

[41]

Malabadi R.B., Mulgund G.S., Nataraja K.. Triacontanol induced somatic embryogenesis and plantlet regeneration in Catharanthus roseus. Journal of Medicinal and Aromatic Plant Sciences, 2009, 31(2): 147-151.

[42]

Malabadi R.B., Mulgund G.S., Vijay Kumar S.. How somatic cells follows embryogenic pathway during cloning mature trees of conifers?. Journal of Phytological Research, 2009, 22(1): 53-56.

[43]

Malabadi R.B., Mulgund G.S., Vijaykumar S.. Smoke-induced seed germination and somatic embryogenesis. Journal of Phytological Research, 2009, 22(2): 205-209.

[44]

Malabadi R.B., Mulgund G.S., Nataraja K.. Plant regeneration via somatic embryogenesis in Pinus kesiya (Royle ex. Gord.) influenced by triacontanol. Acta Physiologiae Plantarum, 2005, 27(4A): 531-537.

[45]

Malabadi R.B., Nataraja K.. RAPD detect no somaclonal variation in cryopreserved cultures of Pinus roxburghii SARG. Propagation of Ornamental Plants, 2006, 6: 114-120.

[46]

Malabadi R.B., Nataraja K.. Smoke-saturated water influences somatic embryogenesis using vegetative shoot apices of mature trees of Pinus wallichiana A. B. Jacks. Journal of Plant Sciences, 2007, 2: 45-53.

[47]

Malabadi R.B., Nataraja K.. Influence of triacontanol on somatic embryogenesis of Pinus roxburghii Sarg. Baltic Forestry, 2007, 13(1): 39-44.

[48]

Malabadi R.B., Nataraja K.. 24-epibrassinolide induces somatic embryogenesis in Pinus wallichiana A. B. Jacks. Journal of Plant Sciences, 2007, 2(2): 171-178.

[49]

Malabadi R.B., Nataraja K.. Genetic transformation of conifers: Applications in and impacts on commercially forestry. Transgenic Plant Journal, 2007, 1(2): 289-313.

[50]

Malabadi R.B., Nataraja K.. Plant regeneration via somatic embryogenesis using secondary needles of mature trees of Pinus roxburghii Sarg. International Journal of Botany, 2007, 3: 40-47.

[51]

Malabadi R.B., Nataraja K.. Isolation of cDNA clones of genes differentially expressed during somatic embryogenesis of P. roxburghii. American Journal of Plant Physiology, 2007, 2: 333-343.

[52]

Malabadi R.B., Teixeira da Silva J.A.. Thin cell layers: Application to forestry biotechnology. Tree and Forestry Science and Biotechnology, 2011, 5(1): 14-18.

[53]

Malabadi R.B., Teixeira da Silva J.A., Mulgund G.S.. Induction of somatic embryogenesis in Pinus caribaea. Tree and Forestry Science and Biotechnology, 2011, 5(1): 27-32.

[54]

Malabadi R.B., Teixeira da Silva J.A., Nataraja K.. A new approach involving salicylic acid and thin cell layers for cloning mature trees of Pinus roxburghii (Chir Pine). The Americas Journal of Plant Science and Biotechnology, 2008, 2(2): 56-59.

[55]

Malabadi R.B., Teixeira da Silva J.A., Nataraja K.. Salicylic acid induces somatic embryogenesis from mature trees of Pinus roxburghii (Chir pine) using TCL technology. Tree Forestry Science and Biotechnology, 2008, 2(1): 34-39.

[56]

Malabadi R.B., Teixeira da Silva J.A., Nataraja K.. Smoke-saturated water influences in vitro seed germination of Vanda parviflora Lindl. Seed Science and Biotechnology, 2008, 2(2): 65-69.

[57]

Malabadi R.B., van Staden J.. Somatic embryos can be induced from shoot apical domes of mature Pinus patula trees. South African Journal of Botany, 2003, 69: 450-451.

[58]

Malabadi R.B., van Staden J.. Somatic embryogenesis from vegetative shoot apices of mature trees of Pinus patula. Tree Physiology, 2005, 25: 11-16.

[59]

Malabadi R.B., van Staden J.. Role of antioxidants and amino acids on somatic embryogenesis of Pinus patula. In Vitro Cellular and Developmental Biology — Plant, 2005, 41: 181-186.

[60]

Malabadi R.B., van Staden J.. Storability and germination of sodium alginate encapsulated somatic embryos derived from the vegetative shoot apices of mature Pinus patula trees. Plant Cell, Tissue and Organ Culture, 2005, 82: 259-265.

[61]

Malabadi R.B., van Staden J.. Cold-enhanced somatic embryogenesis in Pinus patula is mediated by calcium. South African Journal of Botany, 2006, 72: 613-618.

[62]

Malabadi R.B., Nataraja K.. Cryopreservation and plant regeneration via somatic embryogenesis using shoot apical domes of mature Pinus roxburghii Sarg. Trees. In Vitro Cellular and Developmental Biology — Plant, 2006, 42: 152-159.

[63]

Mayer K.F., Schoof H., Haecker A., Lenhard M., Jürgens G., Laux T.. Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Cell, 1998, 95: 805-815.

[64]

Mu J.H., Lee H.S., Kao T.H.. Characterization of a pollen-expressed receptor-like kinase gene of Petunia inflata and the activity of its encoded kinase. Plant Cell, 1994, 6: 709-721.

[65]

Namasivayam P.. Acquisition of embryogenic competence during somatic embryogenesis. Plant Cell, Tissue and Organ Culture, 2007, 90: 1-8.

[66]

Namasivayam P., Skepper J.N., Hanke D.. Distribution of arabinogalactan protein (AGP) epitopes on the anther-derived embryoid cultures of Brassica napus. Pertanika Journal of Tropical Agriculture Science, 2010, 33(2): 303-313.

[67]

Paques M., Bercetche J.. Method for rejuvenating gymnosperms by somatic embryogenesis. 1998, Paris: Patent no. PCTWO9923874A1

[68]

Park SY, Klimaszewska K, Malabadi RB, Mansfield SD. 2009. Embryogenic cultures of lodgepole pine originating from mature trees and from immature seed explants. IUFRO Tree Biotechnology Conference, June 28th–July 2nd 2009, Whistler, BC, Canada, p 60 (abstract).

[69]

Poethig R.S.. Phase change and the regulation of shoot morphogenesis in plants. Science, 1990, 250: 923-930.

[70]

Poovaiah B.W., Reddy A.S.N.. Calcium and signal transduction in plants. Critical Review of Plant Science, 1993, 12: 185-211.

[71]

Pullman G.S., Zhang Y., Phan B.H.. Brassinolide improves embryogenic tissue initiation in conifers and rice. Plant Cell Reports, 2003, 22: 96-104.

[72]

Rajasekaran L.R., Blake T.J.. Early growth invigoration of jack pine seedlings by natural plant growth regulators. Trees, 1998, 12: 420-423.

[73]

Rao M.V., Paliyath G., Ormrod D.P., Murr D.P., Watkins C.B.. Influence of salicylic acid on H2O2 production, oxidative stress, and H2O2-metabolizing enzymes: salicylic acid mediated oxidative damage requires H2O2. Plant Physiology, 1997, 115: 137-149.

[74]

Ries S., Houtz R.. Triacontanol as a plant growth regulator. Horticultural Science, 1983, 18: 654-662.

[75]

Ronsch H., Adam G., Matschke J., Schachler G.. Influence of (22S, 23S)-homobrassinolide on rooting capacity and survival of adult Norway spruce cuttings. Tree Physiology, 1993, 12: 71-80.

[76]

Ruaud J.N.. Maturation and conversion into plantlets of somatic embryos derived from needles and cotyledons of seven 56-day-old Picea abies. Plant Science, 1993, 92: 213-220.

[77]

Ruaud J.N., Bercetche J., Paques M.. First evidence of somatic embryogenesis from needles of 1-year-old Picea abies plants. Plant Cell Reports, 1992, 11: 563-566.

[78]

Sasse J.M.. Recent progress in brassinosteroid research. Physiologia Plantaram, 1997, 100: 697-701.

[79]

Schmidt E.D., Guzzo F., Toonen M.A., de Vries S.C.. A leucine-rich repeat containing receptor-like kinase marks somatic plant cells competent to form embryos. Development, 1997, 124: 2049-2062.

[80]

Schultze M., Kondorosi A.. The role of lipochitooligosaccharides in root nodule organogenesis and plant cell growth. Current Opinion in Genetics and Development, 1996, 6: 631-638.

[81]

Smith DR. 1994. Growth medium for plant embryogenic tissue. Australia/Canada Patent #PM5232.

[82]

Smith D.R.. The role of in vitro methods in pine plantation establishment: The lesson from New Zealand. Plant Tissue Culture and Biotechnology, 1997, 3: 63-73.

[83]

Smith DR. 1999. Successful rejuvenation of radiata pine. Proceedings of the 25th Southern Forest Tree Improvement Conference, New Orleans 11–14th July 1999. SFITC\Louisiana State University, pp 158–167.

[84]

Spaink H.P.. Regulation of plant morphogenesis by lipochitin oligosaccharides. Critical Review in Plant Science, 1996, 15: 559-582.

[85]

Staehelin C., Schultze M., Kondorosi E., Mellor R.B., Boller T., Kondorosi A.. Structural modifications in Rhizobium meliloti Nod factors influence their stability against hydrolysis by root chitinases. Plant Journal, 1994, 5: 319-330.

[86]

Tantos A., Meszaros A., Kissimon J., Horvath G., Farkas T.. Triacontanol-supported microproprapagation of two woody plants. Plant Cell Reports, 2001, 19: 88-91.

[87]

Trigiano RN, Gray DJ. 2010. Plant Tissue Culture, Development and Biotechnology. CRC Press, ISBN. 13:978-1-4200-8327-9. pp 25–573.

[88]

Tuteja N, Gill SS, Trivedi PK, Asif MH, Nath P. 2010. Plant growth regulators and their role in stress tolerance. In: Anjum NA (ed), Plant Nutrition and Abiotic Stress Tolerance I. Plant Stress, 4(Special Issue 1): 1–18.

[89]

van Hengel A.J., Tadesse Z., Immerzeel P., Schols H., van Kammen A., De Vries S.C.. N-acetylglucosamine and glucosamine-containing arabinogalactan proteins control somatic embryogenesis. Plant Physiology, 2001, 125: 1880-1890.

[90]

van Staden J., Brown N.A.C., Jager A.K., Johnson T.A.. Smoke as a germination cue. Plant Species Biology, 2000, 15: 167-178.

[91]

van Staden J., Jager A.K., Light M.E., Burger B.V.. Isolation of the major germination cue from plant-derived smoke. South African Journal of Botany, 2004, 70: 654-657.

[92]

Vardhini BV, Anuradha S, Sujatha E, Seeta Ram Rao S. 2010. Role of brassinosteroids in alleviating various abiotic and biotic stresses — a review. In: Anjum NA (ed), Plant Nutrition and Abiotic Stress Tolerance I. Plant Stress, 4 (Special Issue 1): 55–61

[93]

von Aderkas P., Bonga J.M.. Influencing micropropagation and somatic embryogenesis in mature trees by manipulation of phase change, stress and culture environment. Tree Physiology, 2000, 20: 921-928.

[94]

von Arnold S., Sabala I., Bozhkov P., Dyachok J., Filonova L.. Developmental pathways of somatic embryogenesis. Plant Cell, Tissue and Organ Culture, 2002, 69: 233-249.

[95]

Westcott R.J.. Production of embryogenic callus from nonembryonic explants of Norway spruce (Picea abies (L.) Karst). Plant Cell Reports, 1994, 14: 47-49.

[96]

Wiweger M. 2003. Signal molecules in embryogenesis of Norway spruce. Doctoral thesis, Swedish University of Agricultural Sciences Uppsala. ISSN 1401-6230; ISBN 91-576-6527-3. pp. 1–53.

[97]

Zuo J., Niu Q.W., Frugis G., Chua N.H.. The WUSCHEL gene promotes vegetative-to-embryonic transition in Arabidopsis. Plant Journal, 2000, 30: 349-359.

AI Summary AI Mindmap
PDF

150

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/