DNA methylation in tissues of Chamaedorea elegans

Yongquan Lu , Jia Qing , Haiying Li , Zaikang Tong

Journal of Forestry Research ›› 2012, Vol. 23 ›› Issue (3) : 425 -428.

PDF
Journal of Forestry Research ›› 2012, Vol. 23 ›› Issue (3) : 425 -428. DOI: 10.1007/s11676-012-0231-y
Original Paper

DNA methylation in tissues of Chamaedorea elegans

Author information +
History +
PDF

Abstract

DNA methylation plays a crucial role in regulating plant development and tissue differentiation. In this study, we compared the methylation levels in leaf, root, and stem in Chamaedorea elegans by using the technique of methylation-sensitive amplified fragment length polymorphism AFLP. Over 19% (42/220) bases were uniformly methylated in these tissues. The percentages of polymorphism resulting from varied methylation in mature leaf (L1), young leaf (L2), baby leaf (L3), stem (S), young root (R1) and lignified root (R2) were 29.5%, 29.0%, 27.1%, 30.7%, 63.0% and 28.3%, respectively. The numbers of polymorphic loci detected in the leaves of three developmental stages were similar, ranging from 20 to 30. In contrast, roots at the two developmental stages differed greatly, with 145 polymorphic loci detected in R1 and 27 in R2. Our results suggest that the methylation level in leaves slightly increases with aging, while that in roots decreases dramatically with aging.

Keywords

DNA Methylation / Chamaedorea elegans / tissue / root / leaf / stem

Cite this article

Download citation ▾
Yongquan Lu, Jia Qing, Haiying Li, Zaikang Tong. DNA methylation in tissues of Chamaedorea elegans. Journal of Forestry Research, 2012, 23(3): 425-428 DOI:10.1007/s11676-012-0231-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bednarek PT, Orlowska R, Koebner RMD, Zimny J. 2007. Quantification of the tissue-culture induced variation in barly (Hordeum vulgare L.). BMC Plant Biology, 7(10): http://www.biomedcentral.com/1471-2229/7/10.

[2]

Bird A.. DNA methylation patterns and epigenetic memory. Genes Dev, 2002, 16(1): 6-21.

[3]

Bridgewater S.G.M., Pickles P., Garwood N.C., Penn M., Bateman R.M., Morgan H.P., Wicks N., Bol N.. Chamaedorea in the greater Maya Mountains and the chiquibul forest reserve, Belize: an economic assessment of a non-timber forest procuct. Economic Botany, 2006, 60(3): 265-283.

[4]

Bùžek J., Ebert I., Ruffini-Castiglione R., Široký J., Vyskot B., Greilhube J.. Structure and DNA methylation pattern of partially heterochromatinised endosperm nuclei in Gagea lutea (Liliaceae). Planta, 1998, 204(4): 506-514.

[5]

Chela-Flores J., Migoni R.L.. CG methylation in DNA transcription. International Journal of Theoretical Physics, 1990, 29(8): 853-862.

[6]

Dahl C., Guldberg P.. DNA methylation analysis techniques. Biogerontology, 2003, 4(4): 233-250.

[7]

Lambé P., Mutambel H.S.N., Fouché J.G., Deltour R., Foidart J.M., Gaspar T.. DNA methylation as a key process in regulation of organogenic totipotency and plant neoplastic progression. In Vitro Cell Dev Biol — Plant, 1997, 33(3): 155-162.

[8]

Don R.H., Cox P.T., Wainwright B.J., Baker K., Mattick J.S.. ’Touchdown’ PCR to circumvent spurious priming during gene amplification. Nucleic Acids Res, 1991, 19 14 4008

[9]

Fouse S.D., Shen Y., Pellegrini M., Cole S., Meissner A., Van Neste L., Jaenisch R., Fan G.. Promoter CpG methylation contributes to ES cell gene regulation in parallel with Oct4/Nanog, PcG complex, and histone H3 K4/K27 trimethylation. Cell Stem Cell, 2008, 2(2): 160-169.

[10]

Gruenbaum Y., Naveh-Many T., Cedar H., Razin A.. Sequence specificity of methylation in higher plants DNA. Nature, 1981, 292: 860-862.

[11]

Hepburn A.G., Belanger F.C., Mattheis J.R.. DNA methylation in plants. Developmental Genetics, 1987, 8(5/6): 475-493.

[12]

Li E.. Chromatin modification and epigenetic reprogramming in mammalian development. Nat Rev Genet, 2002, 3(9): 662-673.

[13]

Murray M.G., Thompson W.F.. Rapid isolation of highmolecular-weight plant DNA. Nucleic Acids Research, 1980, 8(19): 4321-4325.

[14]

Thyagarajan B., Rao M.. Role of DNA mehylation and epigenetics in stem cells. Stem Cell Biology and Regenerative Medicine, 2009, PartIII: 269-276.

[15]

Vanyushin B.F.. DNA methylation and epigenetics. Russia Journal of Genetics, 2006, 42(9): 1186-1189.

[16]

Vergara R., Verde F., Pitto L., Schiavo F.L., Terzi M.. Reversible variations in the methylation pattern of carrot DNA during somatic embryogenesis. Plant Cell Reports, 1990, 8(13): 697-700.

[17]

Vos P., Hogers R., Bleeker M., Reijans M., Van de Lee T., Hornes M., Frijters A., Pot J., Peleman J., Kuiper M.. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res, 1995, 23(21): 4407-4414.

[18]

Xu S.B., Tao Y.F., Yang Z.Q., Chu J.Y.. A simple and rapid method used for silver staining and gel preservation. Hereditas (Beijing), 2002, 24(3): 335-336.

AI Summary AI Mindmap
PDF

117

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/