Spatial variation and prediction of forest biomass in a heterogeneous landscape

S. Lamsal , D. M. Rizzo , R. K. Meentemeyer

Journal of Forestry Research ›› 2012, Vol. 23 ›› Issue (1) : 13 -22.

PDF
Journal of Forestry Research ›› 2012, Vol. 23 ›› Issue (1) : 13 -22. DOI: 10.1007/s11676-012-0228-6
Original Paper

Spatial variation and prediction of forest biomass in a heterogeneous landscape

Author information +
History +
PDF

Abstract

Large areas assessments of forest biomass distribution are a challenge in heterogeneous landscapes, where variations in tree growth and species composition occur over short distances. In this study, we use statistical and geospatial modeling on densely sampled forest biomass data to analyze the relative importance of ecological and physiographic variables as determinants of spatial variation of forest biomass in the environmentally heterogeneous region of the Big Sur, California. We estimated biomass in 280 forest plots (one plot per 2.85 km2) and measured an array of ecological (vegetation community type, distance to edge, amount of surrounding non-forest vegetation, soil properties, fire history) and physiographic drivers (elevation, potential soil moisture and solar radiation, proximity to the coast) of tree growth at each plot location. Our geostatistical analyses revealed that biomass distribution is spatially structured and autocorrelated up to 3.1 km. Regression tree (RT) models showed that both physiographic and ecological factors influenced biomass distribution. Across randomly selected sample densities (sample size 112 to 280), ecological effects of vegetation community type and distance to forest edge, and physiographic effects of elevation, potential soil moisture and solar radiation were the most consistent predictors of biomass. Topographic moisture index and potential solar radiation had a positive effect on biomass, indicating the importance of topographicallymediated energy and moisture on plant growth and biomass accumulation. RT model explained 35% of the variation in biomass and spatially autocorrelated variation were retained in regession residuals. Regression kriging model, developed from RT combined with kriging of regression residuals, was used to map biomass across the Big Sur. This study demonstrates how statistical and geospatial modeling can be used to discriminate the relative importance of physiographic and ecologic effects on forest biomass and develop spatial models to predict and map biomass distribution across a heterogeneous landscape.

Keywords

forest biomass / landscape heterogeneity / spatial variation / semivariogram / regression tree / regression kriging / Big Sur California

Cite this article

Download citation ▾
S. Lamsal, D. M. Rizzo, R. K. Meentemeyer. Spatial variation and prediction of forest biomass in a heterogeneous landscape. Journal of Forestry Research, 2012, 23(1): 13-22 DOI:10.1007/s11676-012-0228-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Asbjornsen H., Ashton M.S., Vogt D.J., Palacios S.. Effects of habitat fragmentation on the buffering capacity of edge environments in a seasonally dry tropical oak forest ecosystem in Oaxaca, Mexico. Agricultuer Ecosystems and Environment, 2004, 103: 481-495.

[2]

Anderson L.O., Malhi Y., Ladle R.J., Aragão L.E.O.C., Shimabukuro Y., Phillips O.L., Baker T., Costa A.C.L., Espejo J.S., Higuchi N., Laurance W.F., López-González G., Monteagudo A., Núñez-Vargas P., Peacock J., Quesada C.A., Almeida S., Vásquez R.. Influence of landscape heterogeneity on spatial patterns of wood productivity, wood specific density and above ground biomass in Amazonia. BiogeoscienceDiscussions, 2009, 6: 2039-2083.

[3]

Baccini A., Friedl M.A., Woodcock C.E., Warbington R.. Forest biomass estimation over regional scales using multisource data. Geophysical Research Letters, 2004, 31: L10501-L10504.

[4]

Beyer HL. 2004. Hawth’s Analysis Tools for ArcGIS. Available at http://www.spatialecology.com/htools

[5]

Blackard J.A., Finco M.V., Helmer E.H., Holden G.R., Hoppus M.L., Jacobs D.M., Lister A.J., Moisen G.G., Nelson M.D., Riemann R., Reufenacht B., Salajanu D., Weyermann D.L., Winterberger K.C., Brandeis T.J., Czaplewski R.L., McRoberts R.E., Patterson P.L., Tymico R.P.. Mapping US forest biomass using nationwide forest inventory data and moderate resolution information. Remote Sensing of Environment, 2008, 112: 1658-1677.

[6]

Borchert M., Lopez A., Bauer C., Knowd T.. Field guide to coastal sage scrub and chaparral alliances of Los Padres National Forest. 2004, Vallejo, CA: USDA Forest Service

[7]

Breiman L., Friedman J., Olshen R., Stone C.. Classification and regression trees. 1984, Pacific Grove, CA: Wadsworth.

[8]

Brown S.. Measuring carbon in forests; current status and future challenges. Environmental pollution, 2002, 116: 363-372.

[9]

Brown S.L., Schroeder P., Kern J.S.. Spatial distribution of biomass in forests of the eastern USA. Forest Ecology and Management, 1999, 123: 81-90.

[10]

Brown S., Sathaye J., Cannell M., Kauppi P.. Watson R.T., Zinyowera M.C., Moss R.H.. Management of forests for mitigation of greenhouse gas emissions. Climate Change 1995: Impacts, Adaptations and Mitigation of Climate Change: Scientific-Technical Analyses. 1996, Cambridge and New York: Cambridge University Press, 775 794

[11]

Callaway R.M., Davis F.W.. Vegetation dynamics, fire and the physical environment in coastal central California. Ecology, 1993, 74(5): 1567-1578.

[12]

Chen J., Saunders S.C., Crow R.R., Naiman R.J., Brosofske K.D., Mroz G.D., Brookshire B.L., Franklin J.F.. Microclimate in forest ecosystem and landscape ecology. BioScience, 1999, 49(558): 288-297.

[13]

Clark D.B., Clark D.A.. Landscape-scale variation in forest structure and biomass in a tropical rain forest. Forest Ecology and Management, 2000, 137: 185-198.

[14]

Daly C., Talyon G.H., Gisbon W.P., Parzybok T.W., Johnson G.L., Pasteris P.. High-quality spatial climate data sets for the United States and beyond. Trans. ASAE, 2001, 43: 1957-1962.

[15]

Davis F.W., Borchert M.I., Flint A., Meentemeyer R.K., Rizzo D.M.. Preimpact forest composition and ongoing tree mortality associated with sudden oak death disease in the Big Sur Region, California. Forest Ecology and Management, 2010, 259(12): 2342-2354.

[16]

DeAth G., Fabricius K.E.. Classification and regression trees: a powerful yet simple technique for ecological data analysis. Ecology, 2000, 81(11): 3178-3192.

[17]

Dixon R.K., Andrasko K.J., Sussman F.G., Lavinson M.A., Trexler M.C., Vinson T.S.. Forest sector carbon offset projects: near-term opportunities to mitigate greenhouse gas emissions. Water, Air, and Soil Pollution, 1993, 70: 561-577.

[18]

Dubayah R.C.. Modeling a solar radiation topoclimatology for the Rio Grande river basin. Journal of Vegetation Science, 1994, 5: 627-640.

[19]

FRAP (Fire Resources and Management Program). 1995. Fire management for California ecosystems. California Department of Forest and Fire Protection. Available at 〈http://frap.cdf.ca.gov/>

[20]

Freeman E.A., Moisen G.G.. Evaluating kriging as a tool to improve moderate resolution of forest biomass. Environmental Monitoring and Assessment, 2007, 128: 395-410.

[21]

Fried JS, Zhou X. 2008. Forest inventory-based estimation of carbon stocks and flux in California forests in 1990. United States Department of Agriculture Forest Service Technical Report, PNW-GTR 750, Washington, DC.

[22]

Gesch, DB. 2007. The National Elevation Dataset. In Maune, D. (ed.), Digital Elevation Model Technologies and Applications: The DEM Users Manual, 2nd Edition: Bethesda, Maryland: American Society for Photogrammetry and Remote Sensing, pp. 99–118.

[23]

Gilbert B., Lowell K.. Forest attributes and spatial autocorrelation and interpolation: effects of alternative sampling locations schemata in the boreal forest. Landscape and Urban Planning, 1997, 37: 235-244.

[24]

Goovaerts P.. Geostatistics for natural resources evaluation. 1997, New York: Oxford University Press

[25]

Goovaerts P.. Geostatistical modeling of uncertainty in soil science. Geoderma, 2001, 103: 3-26.

[26]

He H.S., Shang B.Z., Crow T.R., Gustafson E.J., Shifley S.R.. Simulating forest fuel and fire risk dynamics across landscapes — LANDIS fuel module design. Ecological Modelling, 2004, 180: 135-151.

[27]

Hengl T., Heuvelink G.B.M., Stein A.. A generic framework for spatial prediction of soil variables based on regression-kriging. Geoderma, 2004, 120: 75-93.

[28]

Henson P, Usner DJ. 1996. The natural history of Big Sur. University of California Press.

[29]

Houghton R.A.. The annual net flux of carbon to the atmosphere from changes in land use 1850-1990. Tellus, 1999, 51B: 298-313.

[30]

Houghton R.A.. Aboveground forest biomass and the global carbon balance. Global Change Biology, 2005, 11: 945-958.

[31]

Hu H., Wang G.G.. Changes in forest biomass carbon storage in the South Carolina Piedmont between 1936 and 2005. Forest Ecology and Management, 2008, 255: 1400-1408.

[32]

Jenkins J.C., Chojnacky D.C., Health L.S., Birdsey R.A.. National-scale biomass estimators for United States tree species. Forest Science, 2003, 49(1): 12-35.

[33]

Klaasen W., van Bruegel P.B., Moors E.J., Nieveen J.P.. Increased heat fluxes near a forest edge. Theoretical and Applied Climatology, 2002, 72: 231-243.

[34]

Lamsal S., Grunwald S., Bruland G.L., Bliss C.M., Comerford N.B.. Regional hybrid geospatial modeling of soil nitrate-nitrogen in the Santa Fe River Watershed. Geoderma, 2006, 135: 233-247.

[35]

Legendre P.. Spatial autocorrelation: trouble or new paradigm. Ecology, 1993, 74(6): 1659-1673.

[36]

Lovett G.M., Jones C.G., Turner M.G., Weathers K.C.. Ecosystem functions in heterogeneous landscapes. 2005, New York, NY: Springer

[37]

Maloney P.E., Lynch S.C., Kane S.F., Jensen C.E., Rizzo D.M.. Establishment of an emerging generalist pathogen in redwood forest communities. Journal of Ecology, 2005, 93: 899-905.

[38]

McDonald R.I., Urban D.L.. Spatially varying rules of landscape change: lessons from a case study. Landscape and Urban Planning, 2006, 74: 7-20.

[39]

Meentemeyer R.K., Moody A.. Distribution of plant life history types in California chapparal: the role of topographically-determined drought severity. Journal of Vegetation Science, 2002, 13(1): 67-78.

[40]

Meentemeyer R.K., Rank N.E., Shoemaker D.A., Oneal C.B., Wickland A.C., Frangioso K.M., Rizzo D.M.. Impact of sudden oak death on tree mortality in the Big Sur ecoregion of California. Biological Invasions, 2008, 10: 1243-1255.

[41]

Meng Q., Cieszewski C., Madden M.. Large area forest inventory using Landsat ETM+: a geostatistical approach. Journal of Photogrammetry and Remote Sensing, 2007, 64: 27-36.

[42]

Mickler R.A., Earnhardt T.S., Moore J.A.. Regional estimation of current and future forest biomass. Environmental Pollution, 2002, 116: S7-S16.

[43]

Moore I.D., Grayson R.B., Ladson A.R.. Digital terrain modelling: a review of hydrological, geomorphological, and biological applications. Hydrological Processes, 1991, 5: 3-30.

[44]

Nanos N., Gonazález-Martínez S.C., Bravo F.. Studying within-stand structure and dynamics with geostatistical and molecular marker tools. Forest Ecology and Management, 2004, 189: 223-240.

[45]

Návar J.. Allometric equations for tree species and carbon stocks for forests of northwestern Mexico. Forest Ecology and Management, 2008, 257: 427-434.

[46]

Ohmann J.L., Crecory M.J., Spies T.A.. Influence of environment, disturbance, and ownership on forest vegetation of coastal Oregon. Ecological Applications, 2007, 17: 18-33.

[47]

Overmars K.P., de Koning G.H.J., Veldkamp A.. Spatial autocorrelation in multi-scale land use models. Ecological Modeling, 2003, 164: 257-270.

[48]

Poulos H.M.. Mapping fuels in the Chihuahuan desert horderlands using remote sensing, geographic information systems, and biophysical modeling. Canadian Journal of Forest Research, 2009, 39: 1917-1927.

[49]

Poulos H.M., Camp A.E., Gatewood R.G., Loomis L.. A hierarchical approach for scaling forest inventory and fuels data from local to landscape scales in the Davis Mountains, Texas, USA. Forest Ecology and Management, 2007, 244: 1-15.

[50]

Saatchi S., Halligan K., Despain D.G., Crabtree R.L.. Estimation of forest fuel load from radar remote sensing. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(6): 1726-1740.

[51]

Saatchi S., Malhi Y., Zutta B., Buermann W., Anderson L.O., Araujo A.M., Phillips O.L., Peacock J., ter Steege H., Lopez Gonzalez G., Baker T., Arroyo L., Almeida S., Higuchi N., Killeen T., Monteagudo A., Neill D., Pitman N., Prieto A., Salomão R., Silva N., Vásquez Martínez R., Laurance W., Ramírez H.A.. Mapping landscape scale variations of forest structure, biomass, and productivity in Amazonia. Biogeosciences Discuss, 2009, 6: 5461-5505.

[52]

Sales M.H., Souza C.M., Kyriakidis P.C., Roberts D.A., Vidal E.. Improving spatial distribution estimation of forest biomass with Geostatistics: a case study of Randônia, Brazil. Ecological Modelling, 2007, 205: 221-230.

[53]

Schlamadinger B., Marland G.. The role of forest and bioenergy strategies in the global carbon cycle. Biomass and Energy, 1996, 10: 275-300.

[54]

Scholz R.W., Schnabel U.. Decision making uncertainty in case of soil remediation. Journal of Environmental Management, 2006, 80: 132-147.

[55]

Schreuder H.T., Gregoire T.G., Wood G.B.. Sampling methods for multiresource forest inventory. 1993, New York, NY: John Wiley and Sons, Inc.

[56]

Smith W.B.. Forest inventory and analysis: a national inventory and monitoring program. Environmental Pollution, 2002, 116: S233-S242.

[57]

Vanwalleghem T., Meentemeyer R.K.. Predicting forest microclimate in heterogeneous landscape. Ecosystems, 2009, 12(7): 1158-1172.

[58]

Webster R., Oliver M.A.. Geostatistics for Environmental Scientists. 2007, Chichester, England: John Wiley and Sons

AI Summary AI Mindmap
PDF

146

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/