Geographic information system (GIS) application for windthrow mapping and management in Iezer Mountains, Southern Carpathians

Savulescu Ionut , Mihai Bogdan

Journal of Forestry Research ›› 2011, Vol. 23 ›› Issue (2) : 175 -184.

PDF
Journal of Forestry Research ›› 2011, Vol. 23 ›› Issue (2) : 175 -184. DOI: 10.1007/s11676-011-0213-5
Original Paper

Geographic information system (GIS) application for windthrow mapping and management in Iezer Mountains, Southern Carpathians

Author information +
History +
PDF

Abstract

Windthrow problem is a difficult task for the forest managers in the Romanian Carpathians and especially in Iezer Mountains. The last windthrow, in July 2005, affected about 370 ha within the study area and left unprotected large slopes with important declivities (20–30°). In our study, we try to propose a tool for forest management, in order to control and minimize the negative effect of wind upon the mountain forest ecosystem. The digital data input derived from forestry data (forest stand typology, age, canopy coverage index, forest productivity class) and from the forest biotope features (soil and topography parameters). The main goal was to find a more objective way for digital layer reclassification in order to obtain the windthrow areas susceptibility map for the Iezer Mountains. Each digital layer has its own weight within the analysis and one of them was difficult to be modeled (the wind features). A statistical approach was developed on the basis of local phenomena and the windthrow features in the Romanian Carpathians. This allowed us to obtain the reclassification conditions for each digital layer. Forest canopy typology and soil features (mainly its volume) were considered as the key factors for the windthrow occurrence analysis. The final windthrow susceptibility map was validated with the help of the statistic occurrence of windthrow areas within each susceptibility class and after a field check of the sites. The result was encouraging, because 92.5% of the windthrow areas fall into the highest windthrow susceptibility class.

Keywords

windthrow / GIS / forest / map / susceptibility

Cite this article

Download citation ▾
Savulescu Ionut, Mihai Bogdan. Geographic information system (GIS) application for windthrow mapping and management in Iezer Mountains, Southern Carpathians. Journal of Forestry Research, 2011, 23(2): 175-184 DOI:10.1007/s11676-011-0213-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bernhardsen T.. Geographic Information Systems. 2001, New York: Wiley, 435.

[2]

Burrough P.A.. GIS and geostatistics: Essential partners for spatial analysis. Environmental and Ecological Statistics, 2001, 8: 361-377.

[3]

Chirita C.. Ecopedologie cu baze de pedologie generala. 1974, Bucuresti: Editura Ceres, 431.

[4]

Cucchi V., Meredieu C., Stokes A., de Coligny F., Suarez J., Gardiner B.A.. Modelling the windthrow risk for simulated forest stands of Maritime pine (Pinus pinaster Ait.). Forest Ecology and Management, 2005, 213: 184-196.

[5]

Dissescu R. 1953. Influenta reliefului asupra vitezei si directiei vanturilor. ICES, Seria I, vol. IV: 7–28.

[6]

Dissescu R.. Studiul rupturilor produse de vant în arboretele din bazinul superior al Somesului Cald. ICEF, 1960, II–VI: 1-57.

[7]

Dissescu R.. Doboraturile produse de vant în anii 1960–1961 în padurile din R.P.R. 1962, Bucuresti: Editura Agro-Silvica, 119.

[8]

EEA (European Environmental Agency). 2008. European forests — ecosystem conditions and sustainable use. EEA Report 3/2008: 1–105.

[9]

Firm D., Nagel T.A., Diaci J.. Disturbance history and dynamics of an oldgrowth mixed species mountain forest in the Slovenian Alps. Forest Ecology and Management, 2009, 257: 1893-1901.

[10]

Florescu I.. Silvicultura. 1981, Bucuresti: Editura Didactica si Pedagogica, 294.

[11]

Gancz V., Apostol B., Petrila M., Lorent A.. Detectarea cu ajutorul imag inilor satelitare a doboraturilor de vant si evaluarea efectelor acestora. Revista Padurilor, 2010, 6: 30-36.

[12]

Gardiner A.B., Quine C.P.. Management of forests to reduce the risk of abiotic damage — a review with particular reference to the effect of strong winds. Forest Ecology and Management, 2000, 135: 261-273.

[13]

Giurgiu V.. Protejarea padurii împotriva vantului si zapezii, Protejarea si dezvoltarea durabila a padurilor Romaniei. 1995, Bucuresti: Editura Arta Grafica, 400.

[14]

Goodchild M.F., Longley P.A.. Goodchild M.F., Maguire D.J., Rhind D.W.. The future of GIS and spatial analysis. Geographical information systems: Principles, techniques, management, applications. 2005, New York: Wiley, 404.

[15]

He H.S.. Forest landscape models: Definitions, characterization and classification. Forest Ecology and Management, 2008, 254: 484-498.

[16]

Ichim R.. Gospodarirea rationala pe baze ecologice a padurilor de molid. 1990, Bucuresti: Editura Ceres, 231.

[17]

Ichim R.. Doboraturile de vant din padurile Judetului Suceava. ICAS, 1976, II: 29-35.

[18]

Kemp K. (ed). 2008. Encyclopaedia of Geographic Information Science, SAGE Publications, p.558.

[19]

Krejci L.. Empirical modeling of windthrow risk using GIS and logistic regression. Geographia Technica, 2010, 1: 25-35.

[20]

Lindemann J.D., Baker W.L.. Attributes of blowdown patches from a severe wind event in the Southern Rocky Mountains USA. Landscape Ecology, 2001, 16: 313-325.

[21]

Lorz C., Fürst C., Galic Z., Matijasic Podrazky V., Potocic N., Simoncic P., Strauch M., Vacik H., Makeschin F.. GIS-based Probability Assessment of Natural Hazards in Forested Landscapes of Central and South-Eastern Europe. Environmental Management, 2010, 46: 920-930.

[22]

Marcu G., Stoica C., Besleaga N., Stoian R., Ceianu I., Dissescu R., Petrescu I., Pavelescu I.. Doboraturile produse de vant în anii 1964–1966 în padurile din Romania. 1968, Bucuresti: Editura Agrosilvica, 108.

[23]

Marcu M.. Meteorologie si climatologie forestiera. 1983, Bucuresti: Editura Ceres, 239.

[24]

Mihai B., Savulescu I., Sandric I.. Change detection analysis (1986/2002) for the alpine, subalpin and forest landscape in Iezer Mountain (Southern Carpathians, Romania). Mountain Research and Development, 2007, 27(3): 250-258.

[25]

Mitchell S.J., Hailemariam T., Kulis Y.. Empirical modeling of cutblock edge windthrow risk on Vancouver Island, Canada, using stand level information. Forest Ecology and Management, 2001, 154: 117-130.

[26]

Mitchell S.J., Lanquaye-Opoki N., Modzelewski H., Shen Y., Stull R., Jackson P., Murphy B., Ruel J.-C.. Comparison of wind speeds obtained using numerical weather prediction models and topographic exposure indices for predicting windthrow in mountainous areas. Forest Ecology and Management, 2008, 254: 193-204.

[27]

Nakaya T. 2008. Geographically Weighted Regression (GWR), In: K. Kemp (ed), Encyclopaedia of Geographic Information Science, SAGE Publications, p.558.

[28]

Nilsson C., Stjernquist I., Bärring L., Schlyter P., Jönsson A.M., Samuelsson H.. Recorded storm damage in Swedish forests 1901–2000. Forest Ecology and Management, 2004, 199: 165-173.

[29]

Peltola H., Kellomäki S., Väisänen H.. Model computations of the impact of climatic change on the windthrow risk of trees. Climatic Change, 1999, 41: 17-39.

[30]

Popescu Zeletin I.. Marirea rezistentei la vanturi a arboretelor prin masuri amenajistice. Buletin Stiintific, Academia R.P.R., 1951, 3: 1-23.

[31]

Quine CP, Bell PD. 1998. Monitoring of windthrow occurrence and progression in spruce forests in Britain. Forestry Commission Research Agency, p.87.

[32]

Rich R.L., Frelich L., Reich P., Bauer M.E.. Detecting wind disturbance severity and canopy heterogeneity in boreal forest by coupling high-spatial resolution satellite imagery and field data. Remote Sensing of Environment, 2010, 114: 299-308.

[33]

Ruel J.C., Mitchell S.J., Dornier M.. A GIS based approach to map wind exposure for windthrow hazard rating. Northern Journal of Applied Forestry, Society of American Foresters, 2002, 19(4): 183-187.

[34]

Ruel J.C., Pin D., Cooper K.. Windthrow in riparian buffer strips: effect of wind exposure, thinning and strip width. Forest Ecology and Management, 2001, 143: 105-113.

[35]

Ruel J.C.. Factors influencing windthrow in balsam fir forest: from landscape studies to individual tree studies. Forest Ecology and Management, 2000, 135: 169-178.

[36]

Šamonil P., Antolík L., Svoboda M., Adam D.. Dynamics of windthrow events in a natural fir-beech forest in the Carpathian Mountains. Forest Ecology and Management, 2009, 257: 1148-1156.

[37]

Schröter D., Cramer W., Leemans R., Prentice I.C., Araujo M.B., Arnell N.W., Bondeau A., Bugmann H., Carter T.R., Ewert F., Glendining M., Gracia M.C., de la Vega-Leinert A.C., Erhard M., House J.I., Kankaanpää S., Klein R.J.T., Lavorel S., Lindner M., Metzger M.J., Meyer J., Mitchell T.D., Reginster I., Rounsevell M., Sabate S., Sitch S., Smith B., Smith J., Smith P., Sykes M.T., Thonicke K., Thuiller W., Tuck G., Zaehle S., Zierl B.. Ecosystem service supply and vulnerability to global change in Europe. Science, 2005, 310: 1333-1337.

[38]

Seidl R., Fernandes P., Fonseca T., Gillet F., Jönsson A., Merganičova K., Netherer S., Arpaci A., Bontemps J.D., Bugmann H., González-Olabarria J.R., Lasch P., Meredieu C., Moreira F., Schelhaas M.J., Mohren F.. Modeling natural disturbances in forest ecosystems: a review. Ecological Modelling, 2011, 222: 903-924.

[39]

Svoboda M., Fraver S., Janda P., Bače R., Zenáhlíkova J.. Natural development and regeneration of Central European montane spruce forest. Forest Ecology and Management, 2010, 260: 706-714.

[40]

Svoboda M., Pouska V.. Structure of a Central-European mountain spruce old-growth forest with respect to historical development. Forest Ecology and Management, 2008, 255: 2177-2188.

[41]

Teich M., Bebi P.. Evaluating the benefit of avalanche protection forest with GIS — based risk analyses-A case study in Switzerland. Forest Ecology and Management, 2009, 257: 1010-1019.

[42]

Vlad I., Petrescu L.. Cultura molidului în Romania. 1977, Bucuresti: Editura Ceres, 359.

[43]

Walshe J, Dhubhain Á Ní. 1998. The development of a GIS-based windthrow risk model. Crop Science, Horticulture and Forestry.

[44]

Winter S., Fischer H.S., Fischer A.. Relative quantitative reference approach for naturalness assessments of forests. Forest Ecology and Management, 2010, 259: 1624-1632.

[45]

Wintle B.A., Lindenmayer D.B.. Adaptive risk management for certifiably sustainable forestry. Forest Ecology and Management, 2008, 256: 1311-1319.

[46]

Wohlgemuth T., Bürgi M., Scheidegger C., Schütz M.. Dominance reduction of species through disturbance — a proposed management principle for Central European forests. Forest Ecology and Management, 2002, 166: 1-15.

[47]

Yoshida T., Noguchi M.. Vulnerability to strong winds for major tree species in a northern Japanese mixed forest: analyses of historical data. Ecological Research, 2009, 24: 909-919.

[48]

Zeng H., Peltola H., Väisänen H., Kellomäki S.. The effects of fragmentation on susceptibility of a boreal forest ecosystem to wind damage. Forest Ecology and Management, 2009, 257: 1165-1173.

[49]

Zeng H., Talkkari A., Peltola H., Kellomäki S.. A GIS-based decision support system for risk assessment of wind damage in forest management. Environmental Modelling & Software, 2007, 22: 1240-1249.

AI Summary AI Mindmap
PDF

119

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/